Page 237 - 《软件学报》2020年第10期
P. 237
潘晓 等:支持 OR 语义的高效受限 Top-k 空间关键字查询技术 3213
6 总 结
基于位置的地理信息服务在人们的生活中发挥着越来越重要的作用,针对空间文本对象查询的研究成为
工业界和学术界关注的研究热点问题之一.为了给用户提供更多高品质的选择结果,本文针对基于聚集倒排线
性四分树的高效 OR 语义的受限 Top-k 空间关键字查询的问题进行了研究.综合考虑空间距离、空间文本相似
程度的需求,基于聚集倒排线性四分树,分别提出基于虚拟四分树的 VQuad 和基于虚拟网格的 VGrid 算法.两种
算法均可同时支持 AND 语义和 OR 语义.通过一系列的实验发现,由于 VGrid 直接利用了线性四分树上空间编
码的特点,在所有的实验设置中其性能均优于 VQuad 且算法性能更稳定.未来考虑将此技术思想应用到在道路
网络上的查询研究中.
References:
[1] Zhu H, Yang X, Wang B, Lee WC. Range-based obstructed nearest neighbor queries. In: Proc. of the ACM SIGMOD. 2016.
2053–2068.
[2] Li Y, Huang Z, Zhu R, Li G, Shu L, Tian S, Ma M. Parameterized spatio-textual publish/subscribe in rode sensor networks. IEEE
Access, 2017,5(99):22940–22952.
[3] Sanderson M, Kohler J. Analyzing geographic queries. In: Proc. of the Int’l ACM SIGIR Conf. 2004.
[4] Chan KH, Long C, Wong CW. On generalizing collective spatial keyword queries. IEEE Trans. on Knowledge and Data
Engineering, 2018,30(9):1712–1726.
[5] Han XX, Yang DH, Li JZ. TKEP: An efficient top-K query processing algorithm on massive data. Chinese Journal of Computers,
2010,33(8):1405–1417 (in Chinese with English abstract).
[6] Zhu R, Wang B, Yang X, Zheng B, Wang G. SAP: Improving continuous top-k queries over streaming data. IEEE Trans. on
Knowledge and Data Engineering, 2017,29(6):1310–1328.
[7] Hu HQ, Li GL, Bao ZF, Feng JH, Wu YW, Gong ZG, Xu YQ. Top-k spatio-textual similarity join. IEEE Trans. on Knowledge and
Data Engineering, 2016,28(2):551–565.
[8] Wang Y, Jian X, Yang ZH, Li J. Query optimal k-plex based community in graphs. Data Science and Engineering, 2017,2(4):
274–274.
[9] Yang J, Zhang Y, et al. Categorical top-k spatial influence query. World Wide Web, 2017,20:175−203.
[10] Cong G, Jensen CS, Wu D. Efficient retrieval of the top-k most relevant spatial Web objects. Proc. of the VLDB Endowment, 2009,
2(1):337–348.
[11] Chan KH, Li C. Hybrid indexing and seamless ranking of spatial and textual features of Web documents. In: Proc. of the SSTD.
2017. 357–375.
[12] Li ZS, Lee KC, Zheng BH, Lee WC, Lee D, Wang XF. IR-tree: An efficient index for geographic document search. IEEE Trans. on
Knowledge and Data Engineering, 2011,23(4):585–599.
[13] Rochajunior JB, Gkorgkas O, Jonassen S, Nørvåg K. Efficient processing of top-k spatial keyword queries. In: Proc. of the SSTD.
2011. 205–222.
[14] Liu XP, Wan CX, Liu DX, Liao GQ. Survey on spatial keyword search. Ruan Jian Xue Bao/Journal of Software, 2016,27(2):
329−347 (in Chinese with English abstract). http://www.org.jos.cn/1000-9825/4934.htm [doi: 10.13328/j.cnki.jos.004934]
[15] Zhang D, Tan KL, Tung AKH. Scalable top-k spatial keyword search. In: Proc. of the EDBT. 2013. 359–370.
[16] Zhang CY, Zhang Y, Zhang WJ, Lin XM. Inverted linear quadtree: Efficient top k spatial keyword search. In Proc. of the ICDE.
2013. 901–912.
[17] Wu DM, Yiu ML, Cong G, Jensen CS. Joint top-k spatial keyword query processing. IEEE Trans. on Knowledge and Data
Engineering, 2012,24(10):1889–1903.
[18] Felipe ID, Hristidis V, Rishe N. Keyword search on spatial databases. In: Proc. of the ICDE. 2008. 656–665.
[19] Chen L, Xu JL, Lin X, Jensen CS, Hu HB. Answering why-not spatial keyword top-k queries via keyword adaption. In: Proc. of the
ICDE. 2016. 697–708.
[20] Chan KH, Long C, Wong CW. Inherent-cost aware collective spatial keyword queries. In: Proc. of the SSTD. 2017. 357–375.