Page 58 - 《摩擦学学报》2021年第6期
P. 58

第 41 卷     第 6 期                        摩  擦  学  学  报                                  Vol 41   No 6
            2021  年 11  月                                Tribology                                   Nov, 2021

            DOI: 10.16078/j.tribology.2020262



                     原位合成M C -WC双相碳化物协同增强
                                                 6
                                           23
                              激光熔覆层摩擦磨损行为的研究



                                                                 1,2
                                                      1,2*
                                            1,2
                                                                          1,2
                                     李剑锋 , 朱真才 , 彭玉兴 , 沈  刚 , 李  翔                 1,2
                                         (1. 中国矿业大学 机电工程学院, 江苏 徐州 221008;
                                      2. 江苏省矿山机电装备高校重点实验室, 江苏 徐州 221116)
                摘   要: 选用W-Fe60-C合金粉末作为原材料,利用激光熔覆技术以最佳工艺参数(激光功率1.5 kW、扫描速度4 mm/s
                和送粉率10 g/min)在16Mn钢表面制备M 23 C 6 -WC (M: Cr, W, Fe)双相碳化物增强铁基熔覆层,并对其微观结构与物
                相进行表征,以及在商用铁基合金数据库的基础上,使用Thermo-Calc软件进行热力学计算来研究熔覆层的凝固过
                程. 此外,还对比研究了纯Fe60合金熔覆层、WC增强铁基熔覆层和M 23 C 6 -WC双相碳化物增强铁基熔覆层的显微硬
                度和摩擦磨损行为. 结果显示:M 23 C 6 -WC双相碳化物增强铁基熔覆层主要以α-Fe枝晶为基体、W、WC和M 23 C 6 复合
                碳化物为增强相. M 23 C 6 碳化物以连续网状结构分布在α-Fe枝晶间,WC颗粒以残留W为形核核心生长成块状分布在
                熔覆层中. 微观结构结合热力学计算结果表明:激光熔覆过程中M 23 C 6 -WC双相碳化物增强铁基熔覆层的凝固过程
                为 液 态 +W→液 态 +W+WC→液 态 +W+WC+γ-(Fe,Ni)枝 晶 →W+WC+γ-(Fe,  Ni)枝 晶 +M 23 C 6 →W+WC+α-Fe枝
                晶+M 23 C 6 . 根据显微硬度和磨损率测试可知:M 23 C 6 -WC双相碳化物增强铁基熔覆层的平均显微硬度为835.3 HV 0.5 ,
                比纯Fe60合金涂层(604.6 HV 0.5 )和WC增强铁基熔覆层(658.9 HV 0.5 )分别增加了约230 HV 0.5 和180 HV 0.5 . M 23 C 6 -
                                                                                                 3
                                                                                            −5
                WC双相碳化物增强铁基熔覆层的磨损率为3.44×10  mm /(N·m),比纯Fe60合金熔覆层[8.51×10  mm /(N·m)]和
                                                              3
                                                          −6
                                           3
                                      −6
                WC增强铁基熔覆层[7.98×10  mm /(N·m)]分别减少了约24.7倍和2.3倍.
                关键词: 激光熔覆技术; M 23 C 6 -WC双相碳化物; 热力学; 凝固过程
                中图分类号: TG174.44                  文献标志码: A                  文章编号: 1004-0595(2021)06–0843–15
                  Friction and Wear Behavior of In-Situ Synthesized M C -WC
                                                                                           23
                                                                                                6
                            Dual-Carbides Synergistically Reinforced Laser
                                                Cladding Coatings


                                                                                 1,2
                                                                    1,2
                                                    1,2*
                                      1,2
                             LI Jianfeng , ZHU Zhencai , PENG Yuxing , SHEN Gang , LI Xiang 1,2
                         (1. School of Mechanical and Electrical Engineering, China University of Mining and Technology,
                                                 Jiangsu Xuzhou 221008, China
                       2. Jiangsu Mine Electromechanical Equipment Engineering Laboratory, Jiangsu Xuzhou 221116, China)
                 Abstract: Abstract: M 23 C 6 -WC (M: Cr, W, Fe) dual-carbide reinforced Fe-based coating was fabricated on the surface
                 of a 16Mn steel by laser cladding W-Fe60-C alloy powders under the optimized parameters of laser power 1.5 kW,
                 scanning velocity 4 mm/s and powder feeding rate 10 g/min, and microstructure and phase composition of coating were
                 further characterized. Thermodynamic calculation was also performed with Thermo-Calc software on the basis of a
                 commercially available Fe-based Alloys' database to explore the solidification process of the coating. In addition, a


            Received 26 November 2020, revised 17 February 2021, accepted 17 February 2021, available online 28 November 2021.
            *Corresponding author. E-mail: zhuzhencaijs@163.com,Tel:+86-18852185863.
            The  project  was  supported  by  the  National  Science  Foundation  for  Youth  (52005497)  and  the  Priority  Academic  Program
            Development of Jiangsu Higher Education Institutions(PAPD).
            国家青年科学基金项目(52005497)和江苏高校优势学科建设工程项目(PAPD) 资助.
   53   54   55   56   57   58   59   60   61   62   63