Page 4 - 《软件学报》2026年第1期
P. 4

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2026,37(1):1−33 [doi: 10.13328/j.cnki.jos.007441] [CSTR: 32375.14.jos.007441]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                         *
                 向量加法系统可达性问题复杂性下界研究综述

                 陈蔚骏  1 ,    傅育熙  2 ,    龙    环  2


                 1
                  (上海交通大学 软件学院, 上海 200240)
                 2
                  (上海交通大学 计算机科学与工程系, 上海 200240)
                 通信作者: 傅育熙, E-mail: fu-yx@cs.sjtu.edu.cn

                 摘 要: 并发与可扩展性是绝大多数复杂系统的关键性质. 作为并发建模的常用语言, Petri 网被大量应用于众多领
                 域. Petri 网的数学抽象, 即向量加法系统是计算机科学中的重要研究对象, 向量加法系统的可达性问题的算法与复
                 杂性刻画是过去      50  年理论计算机科学中最重要的问题之一. 对向量加法系统可达性问题的复杂性下界研究进行
                 系统而全面的总结与阐述, 主要内容包括: (1) 向量加法系统的定义、等价模型、向量加法系统的可达性问题; (2) 向
                 量加法系统可达性问题复杂性的研究进展; (3) 固定维度的可达性问题的下界证明方法及其之间的联系 ; (4) 当前的
                 研究瓶颈及有待解决的问题、未来的研究方向与挑战.
                 关键词: Petri 网; 向量加法系统; 可达性; 计算复杂性
                 中图法分类号: TP301

                 中文引用格式: 陈蔚骏, 傅育熙, 龙环. 向量加法系统可达性问题复杂性下界研究综述. 软件学报, 2026, 37(1): 1–33. http://www.jos.
                 org.cn/1000-9825/7441.htm
                 英文引用格式: Chen WJ, Fu YX, Long H. Survey on Complexity Lower Bound Research for Reachability Problem in Vector Addition
                 Systems. Ruan Jian Xue Bao/Journal of Software, 2026, 37(1): 1–33 (in Chinese). http://www.jos.org.cn/1000-9825/7441.htm

                 Survey on Complexity Lower Bound Research for Reachability Problem in Vector Addition
                 Systems

                            1
                                     2
                 CHEN Wei-Jun , FU Yu-Xi , LONG Huan 2
                 1
                 (School of Software, Shanghai Jiao Tong University, Shanghai 200240, China)
                 2
                 (Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
                 Abstract:  Concurrency  and  scalability  are  fundamental  properties  of  most  complex  systems.  As  a  widely  used  formalism  for  modeling
                 concurrency,  Petri  nets  have  been  applied  across  various  fields.  Their  mathematical  abstraction,  the  vector  addition  system  (VAS),  has
                 become  a  central  object  of  study  in  theoretical  computer  science.  The  reachability  problem  of  VAS,  along  with  its  algorithmic  and
                 complexity  characterizations,  has  been  regarded  as  one  of  the  most  fundamental  and  long-standing  challenges  in  the  field  over  the  last  50
                 years.  This  study  presents  a  comprehensive  survey  of  the  research  on  the  complexity  lower  bounds  of  the  VAS reachability  problem.  The
                 definitions  of  VAS,  their  equivalent  models,  and  the  core  verification  problem,  the  reachability  problem,  are  introduced.  Known
                 completeness  results  concerning  the  complexity  of  the  reachability  problem  are  reviewed.  For  the  fixed-dimension  case,  proof  frameworks
                 based  on  multiplication  triples  and  amplifiers  are  outlined,  and  the  state-of-the-art  achievements  as  well  as  core  proof  techniques  are
                 summarized. Finally, the current research bottlenecks, major open problems, and future challenges are discussed.
                 Key words:  Petri net; vector addition system (VAS); reachability; computational complexity

                    20  世纪中叶, 随着信息技术的进步, 通常的串行模型在为现实中各类复杂系统建模时常无法很好地满足可扩
                                                  [1]
                 展的需求. 为了解决此类问题, 1962       年  Petri 提出了一种网络建模方法. 他放弃了全局的状态控制而是使用许多子


                 *    基金项目: 国家自然科学基金  (62072299); 上海市科委“科技创新行动计划” (24BC3200500, 24BC3200300)
                  收稿时间: 2024-07-23; 修改时间: 2024-11-02; 采用时间: 2025-03-31; jos 在线出版时间: 2025-11-03
                  CNKI 网络首发时间: 2025-11-04
   1   2   3   4   5   6   7   8   9