Page 97 - 《软件学报》2025年第12期
P. 97

5478                                                      软件学报  2025  年第  36  卷第  12  期


                 [32]   Liu Z. Discovering UI display issues with visual understanding. In: Proc. of the 35th IEEE/ACM Int’l Conf. on Automated Software
                     Engineering. Virtual Event: ACM, 2020. 1373–1375. [doi: 10.1145/3324884.3418917]
                 [33]   Fang XX, Sheng B, Li P, Wu D, Wu EH. Automatic GUI test by using SIFT matching. China Communications, 2016, 13(9): 227–236.
                     [doi: 10.1109/CC.2016.7582314]
                 [34]   Wu  H,  Zhou  Z.  Using  convolution  neural  network  for  defective  image  classification  of  industrial  components.  Mobile  Information
                     Systems, 2021, 2021(1): 9092589. [doi: 10.1155/2021/9092589]
                 [35]   Chen JS, Xie ML, Xing ZC, Chen CY, Xu XW, Zhu LM, Li GQ. Object detection for graphical user interface: Old fashioned or deep
                     learning  or  a  combination?  In:  Proc.  of  the  28th  ACM  Joint  Meeting  on  European  Software  Engineering  Conf.  and  Symp.  on  the
                     Foundations of Software Engineering. ACM, 2020. 1202–1214. [doi: 10.1145/3368089.3409691]
                 [36]   Xie ML, Feng SD, Xing ZC, Chen JS, Chen CY. UIED: A hybrid tool for GUI element detection. In: Proc. of the 28th ACM Joint
                     Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 1655–1659. [doi:
                     10.1145/3368089.3417940]
                 [37]   Feiz  S,  Wu  J,  Zhang  XY,  Swearngin  A,  Barik  T,  Nichols  J.  Understanding  screen  relationships  from  screenshots  of  smartphone
                     applications. In: Proc. of the 27th Int’l Conf. on Intelligent User Interfaces. Helsinki: ACM, 2022. 447–458. [doi: 10.1145/3490099.
                     3511109]
                 [38]   Zhang YK, Zhu QH, Yan JW, Liu C, Zhang WJ, Zhao YF, Hao D, Zhang L. Synthesis-based enhancement for GUI test case migration.
                     In:  Proc.  of  the  33rd  ACM  SIGSOFT  Int’l  Symp.  on  Software  Testing  and  Analysis.  Vienna:  ACM,  2024.  869–881.  [doi:  10.1145/
                     3650212.3680327]
                 [39]   Kirinuki H, Matsumoto S, Higo Y, Kusumoto S. Web element identification by combining NLP and heuristic search for Web testing. In:
                     Proc. of the 2022 IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Honolulu: IEEE, 2022. 1055–1065.
                     [doi: 10.1109/SANER53432.2022.00123]
                 [40]   Ardito L, Bottino A, Coppola R, Lamberti F, Manigrasso F, Morra L, Torchiano M. Feature matching-based approaches to improve the
                     robustness of Android visual GUI testing. ACM Trans. on Software Engineering and Methodology (TOSEM), 2021, 31(2): 21. [doi: 10.
                     1145/3477427]
                 [41]   Liu Z, Chen CY, Wang JJ, Chen MZ, Wu BY, Che X, Wang DD, Wang Q. Make LLM a testing expert: Bringing human-like interaction
                     to mobile GUI testing via functionality-aware decisions. arXiv:2310.15780, 2023.
                 [42]   Hu J, Zhang Q, Yin H. Augmenting greybox fuzzing with generative AI. arXiv:2306.06782, 2023.
                 [43]   Chen Y, Hu Z, Zhi C. ChatUniTest: A framework for LLM-based test generation. arXiv:2305.04764, 2024.
                 [44]   Plein L, Ouédraogo WC, Klein J, Bissyandé TF. Automatic generation of test cases based on bug reports: A feasibility study with large
                     language models. In: Proc. of the 46th Int’l Conf. on Software Engineering: Companion Proc. Lisbon: ACM, 2024. 360–361. [doi: 10.
                     1145/3639478.3643119]
                 [45]   Fan ZY, Gao X, Mirchev M, Roychoudhury A, Tan SH. Automated repair of programs from large language models. In: Proc. of the 45th
                     Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023. 1469–1481. [doi: 10.1109/ICSE48619.2023.00128]
                 [46]   Xia CS, Wei YX, Zhang LM. Practical program repair in the era of large pre-trained language models. arXiv:2210.14179, 2024.
                 [47]   Plein L, Bissyandé TF. Can LLMs demystify bug reports? arXiv:2310.06310, 2023.
                 [48]   Taylor  A,  Vassar  A,  Renzella  J,  Pearce  H.  Dcc--help:  Transforming  the  role  of  the  compiler  by  generating  context-aware  error
                     explanations with large language models. In: Proc. of the 55th ACM Technical Symp. on Computer Science Education V.1. Portland:
                     ACM, 2024. 1314–1320. [doi: 10.1145/3626252.3630822]
                 [49]   Kang  S,  Chen  B,  Yoo  S,  Lou  JG.  Explainable  automated  debugging  via  large  language  model-driven  scientific  debugging.
                     arXiv:2304.02195, 2023.
                 [50]   Zhang C, Xue YZ, Chen JC. Design and application of Android platform-based GUI capture-replay testing tool. Computer Applications
                     and Software, 2012, 29(12): 6–9, 68 (in Chinese with English abstract). [doi: 10.3969/j.issn.1000-386x.2012.12.002]
                 [51]   Yu SC, Fang CR, Yun YX, Feng Y. Layout and image recognition driving cross-platform automated mobile testing. In: Proc. of the 43rd
                     IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Madrid: IEEE, 2021. 1561–1571. [doi: 10.1109/ICSE43902.2021.00139]
                 [52]   Behrang F, Orso A. Test migration between mobile Apps with similar functionality. In: Proc. of the 34th IEEE/ACM Int’l Conf. on
                     Automated Software Engineering (ASE). San Diego: IEEE, 2019. 54–65. [doi: 10.1109/ASE.2019.00016]

                 附中文参考文献:
                  [1]   梅宏, 曹东刚, 谢涛. 泛在操作系统: 面向人机物融合泛在计算的新蓝海. 中国科学院院刊, 2022, 37(1): 30–37. [doi: 10.16418/
   92   93   94   95   96   97   98   99   100   101   102