Page 97 - 《软件学报》2025年第12期
P. 97
5478 软件学报 2025 年第 36 卷第 12 期
[32] Liu Z. Discovering UI display issues with visual understanding. In: Proc. of the 35th IEEE/ACM Int’l Conf. on Automated Software
Engineering. Virtual Event: ACM, 2020. 1373–1375. [doi: 10.1145/3324884.3418917]
[33] Fang XX, Sheng B, Li P, Wu D, Wu EH. Automatic GUI test by using SIFT matching. China Communications, 2016, 13(9): 227–236.
[doi: 10.1109/CC.2016.7582314]
[34] Wu H, Zhou Z. Using convolution neural network for defective image classification of industrial components. Mobile Information
Systems, 2021, 2021(1): 9092589. [doi: 10.1155/2021/9092589]
[35] Chen JS, Xie ML, Xing ZC, Chen CY, Xu XW, Zhu LM, Li GQ. Object detection for graphical user interface: Old fashioned or deep
learning or a combination? In: Proc. of the 28th ACM Joint Meeting on European Software Engineering Conf. and Symp. on the
Foundations of Software Engineering. ACM, 2020. 1202–1214. [doi: 10.1145/3368089.3409691]
[36] Xie ML, Feng SD, Xing ZC, Chen JS, Chen CY. UIED: A hybrid tool for GUI element detection. In: Proc. of the 28th ACM Joint
Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 1655–1659. [doi:
10.1145/3368089.3417940]
[37] Feiz S, Wu J, Zhang XY, Swearngin A, Barik T, Nichols J. Understanding screen relationships from screenshots of smartphone
applications. In: Proc. of the 27th Int’l Conf. on Intelligent User Interfaces. Helsinki: ACM, 2022. 447–458. [doi: 10.1145/3490099.
3511109]
[38] Zhang YK, Zhu QH, Yan JW, Liu C, Zhang WJ, Zhao YF, Hao D, Zhang L. Synthesis-based enhancement for GUI test case migration.
In: Proc. of the 33rd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Vienna: ACM, 2024. 869–881. [doi: 10.1145/
3650212.3680327]
[39] Kirinuki H, Matsumoto S, Higo Y, Kusumoto S. Web element identification by combining NLP and heuristic search for Web testing. In:
Proc. of the 2022 IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Honolulu: IEEE, 2022. 1055–1065.
[doi: 10.1109/SANER53432.2022.00123]
[40] Ardito L, Bottino A, Coppola R, Lamberti F, Manigrasso F, Morra L, Torchiano M. Feature matching-based approaches to improve the
robustness of Android visual GUI testing. ACM Trans. on Software Engineering and Methodology (TOSEM), 2021, 31(2): 21. [doi: 10.
1145/3477427]
[41] Liu Z, Chen CY, Wang JJ, Chen MZ, Wu BY, Che X, Wang DD, Wang Q. Make LLM a testing expert: Bringing human-like interaction
to mobile GUI testing via functionality-aware decisions. arXiv:2310.15780, 2023.
[42] Hu J, Zhang Q, Yin H. Augmenting greybox fuzzing with generative AI. arXiv:2306.06782, 2023.
[43] Chen Y, Hu Z, Zhi C. ChatUniTest: A framework for LLM-based test generation. arXiv:2305.04764, 2024.
[44] Plein L, Ouédraogo WC, Klein J, Bissyandé TF. Automatic generation of test cases based on bug reports: A feasibility study with large
language models. In: Proc. of the 46th Int’l Conf. on Software Engineering: Companion Proc. Lisbon: ACM, 2024. 360–361. [doi: 10.
1145/3639478.3643119]
[45] Fan ZY, Gao X, Mirchev M, Roychoudhury A, Tan SH. Automated repair of programs from large language models. In: Proc. of the 45th
Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023. 1469–1481. [doi: 10.1109/ICSE48619.2023.00128]
[46] Xia CS, Wei YX, Zhang LM. Practical program repair in the era of large pre-trained language models. arXiv:2210.14179, 2024.
[47] Plein L, Bissyandé TF. Can LLMs demystify bug reports? arXiv:2310.06310, 2023.
[48] Taylor A, Vassar A, Renzella J, Pearce H. Dcc--help: Transforming the role of the compiler by generating context-aware error
explanations with large language models. In: Proc. of the 55th ACM Technical Symp. on Computer Science Education V.1. Portland:
ACM, 2024. 1314–1320. [doi: 10.1145/3626252.3630822]
[49] Kang S, Chen B, Yoo S, Lou JG. Explainable automated debugging via large language model-driven scientific debugging.
arXiv:2304.02195, 2023.
[50] Zhang C, Xue YZ, Chen JC. Design and application of Android platform-based GUI capture-replay testing tool. Computer Applications
and Software, 2012, 29(12): 6–9, 68 (in Chinese with English abstract). [doi: 10.3969/j.issn.1000-386x.2012.12.002]
[51] Yu SC, Fang CR, Yun YX, Feng Y. Layout and image recognition driving cross-platform automated mobile testing. In: Proc. of the 43rd
IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Madrid: IEEE, 2021. 1561–1571. [doi: 10.1109/ICSE43902.2021.00139]
[52] Behrang F, Orso A. Test migration between mobile Apps with similar functionality. In: Proc. of the 34th IEEE/ACM Int’l Conf. on
Automated Software Engineering (ASE). San Diego: IEEE, 2019. 54–65. [doi: 10.1109/ASE.2019.00016]
附中文参考文献:
[1] 梅宏, 曹东刚, 谢涛. 泛在操作系统: 面向人机物融合泛在计算的新蓝海. 中国科学院院刊, 2022, 37(1): 30–37. [doi: 10.16418/

