Page 396 - 《软件学报》2025年第12期
P. 396
杨慧文 等: 基于目标制导符号执行的智能合约安全漏洞检测 5777
[7] Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko E, Alexandrov Y. SmartCheck: Static analysis of ethereum
smart contracts. In: Proc. of the 1st Int’l Workshop on Emerging Trends in Software Engineering for Blockchain. Gothenburg: ACM,
2018. 9–16. [doi: 10.1145/3194113.3194115]
[8] Xue YX, Ma ML, Yun L, Sui YL, Ye JM, Peng TY. Cross-contract static analysis for detecting practical reentrancy vulnerabilities in
smart contracts. In: Proc. of the 35th IEEE/ACM Int’l Conf. on Automated Software Engineering. Melbourne: IEEE, 2020. 1029–1040.
[9] Feist J, Grieco G, Groce A. Slither: A static analysis framework for smart contracts. In: Proc. of the 2nd IEEE/ACM Int’l Workshop on
Emerging Trends in Software Engineering for Blockchain. Montreal: IEEE, 2019. 8–15. [doi: 10.1109/WETSEB.2019.00008]
[10] Jiang B, Liu Y, Chan WK. ContractFuzzer: Fuzzing smart contracts for vulnerability detection. In: Proc. of the 33rd IEEE/ACM Int’l
Conf. on Automated Software Engineering. Montpellier: IEEE, 2018. 259–269. [doi: 10.1145/3238147.3238177]
[11] Torres CF, Iannillo AK, Gervais A, State R. ConFuzzius: A data dependency-aware hybrid fuzzer for smart contracts. In: Proc. of the
2021 IEEE European Symp. on Security and Privacy. Vienna: IEEE, 2021. 103–119. [doi: 10.1109/EuroSP51992.2021.00018]
[12] Zhuang Y, Liu ZG, Qian P, Liu Q, Wang X, He QM. Smart contract vulnerability detection using graph neural network. In: Proc. of the
29th Int’l Conf. on Int’l Joint Conf. on Artificial Intelligence. Yokohama: ijcai.org, 2021. 454.
[13] Yang HW, Cui ZQ, Chen X, Jia MH, Zheng LW, Liu JB. Defect prediction for Solidity smart contracts based on software measurement.
Ruan Jian Xue Bao/Journal of Software, 2022, 33(5): 1587–1611 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/
6550.htm [doi: 10.13328/j.cnki.jos.006550]
[14] Permenev A, Dimitrov D, Tsankov P, Drachsler-Cohen D, Vechev M. VerX: Safety verification of smart contracts. In: Proc. of the 2020
IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2020. 1661–1677. [doi: 10.1109/SP40000.2020.00024]
[15] So S, Hong S, Oh H. SmarTest: Effectively hunting vulnerable transaction sequences in smart contracts through language model-guided
symbolic execution. In: Proc. of the 30th USENIX Security Symp. USENIX Association, 2021. 1361–1378.
[16] Mossberg M, Manzano F, Hennenfent E, Groce A, Grieco G, Feist J, Brunson T, Dinaburg A. Manticore: A user-friendly symbolic
execution framework for Binaries and smart contracts. In: Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering.
San Diego: IEEE, 2019. 1186–1189. [doi: 10.1109/ASE.2019.00133]
[17] Luu L, Chu DH, Olickel H, Saxena P, Hobor A. Making smart contracts smarter. In: Proc. of the 2016 ACM SIGSAC Conf. on Computer
and Communications Security. Vienna: ACM, 2016. 254–269. [doi: 10.1145/2976749.2978309]
[18] Chen JC, Xia X, Lo D, Grundy J, Luo XP, Chen T. DefectChecker: Automated smart contract defect detection by analyzing EVM
bytecode. IEEE Trans. on Software Engineering, 2022, 48(7): 2189–2207. [doi: 10.1109/TSE.2021.3054928]
[19] Tsankov P, Dan A, Drachsler-Cohen D, Gervais A, Bünzli F, Vechev M. Securify: Practical security analysis of smart contracts. In: Proc.
of the 2018 ACM SIGSAC Conf. on Computer and Communications Security. Toronto: ACM, 2018. 67–82. [doi: 10.1145/3243734.
3243780]
[20] Durieux T, Ferreira JF, Abreu R, Cruz P. Empirical review of automated analysis tools on 47,587 Ethereum smart contracts. In: Proc. of
the 42nd ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 530–541. [doi: 10.1145/3377811.3380364]
[21] Ren M, Yin ZJ, Ma FC, Xu ZY, Jiang Y, Sun CN, Li HG, Cai Y. Empirical evaluation of smart contract testing: What is the best choice?
In: Proc. of the 30th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. New York: ACM, 2021. 566–579. [doi: 10.1145/
3460319.3464837]
[22] Ghaleb A, Pattabiraman K. How effective are smart contract analysis tools? Evaluating smart contract static analysis tools using bug
injection. In: Proc. of the 29th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. New York: ACM, 2020. 415–427. [doi: 10.
1145/3395363.3397385]
[23] Qian P, Liu ZG, He QM, Huang BT, Tian DZ, Wang X. Smart contract vulnerability detection technique: A survey. Ruan Jian Xue
Bao/Journal of Software, 2022, 33(8): 3059–3085 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6375.htm [doi: 10.
13328/j.cnki.jos.006375]
[24] Fu ML, Wu LF, Hong Z, Feng WB. Research on vulnerability mining technique for smart contracts. Journal of Computer Applications,
2019, 39(7): 1959–1966 (in Chinese with English abstract). [doi: 10.11772/j.issn.1001-9081.2019010082]
[25] Ni YD, Zhang C, Yin TT. A survey of smart contract vulnerability research. Journal of Cyber Security, 2020, 5(3): 78–99 (in Chinese
with English abstract). [doi: 10.19363/J.cnki.cn10-1380/tn.2020.05.07]
[26] Zheng ZB, Wang CD, Cai JH. Analysis of the current status of smart contract security research and detection methods. Information
Security and Communications Privacy, 2020(7): 93–105 (in Chinese with English abstract). [doi: 10.3969/j.issn.1009-8054.2020.07.012]
[27] Tu LQ, Sun XB, Zhang JL, Cai J, Li B, Bo LL. Survey of vulnerability detection tools for smart contracts. Computer Science, 2021,
48(11): 79–88 (in Chinese with English abstract). [doi: 10.11896/jsjkx.210600117]
[28] Gan ST, Wang LZ, Xie XH, Qin XJ, Zhou L, Chen ZN. Guiding symbolic execution analysis by leveraging program function label slice.

