Page 20 - 《软件学报》2025年第12期
P. 20
于恒彪 等: 面向编译优化结果不一致的代码高效定位 5401
[16] Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P. MPFR: A multiple-precision binary floating-point library with correct
rounding. ACM Trans. on Mathematical Software (TOMS), 2007, 33(2): 13–es. [doi: 10.1145/1236463.1236468]
[17] Chiang WF, Gopalakrishnan G, Rakamaric Z, Solovyev A. Efficient search for inputs causing high floating-point errors. In: Proc. of the
19th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming. Orlando: ACM, 2014. 43–52. [doi: 10.1145/2555243.
2555265]
[18] Yi X, Chen LQ, Mao XG, Ji T. Efficient global search for inputs triggering high floating-point inaccuracies. In: Proc. of the 24th Asia-
Pacific Software Engineering Conf. Nanjing: IEEE, 2017. 11–20. [doi: 10.1109/APSEC.2017.7]
[19] Zou DM, Wang R, Xiong YF, Zhang L, Su ZD, Mei H. A genetic algorithm for detecting significant floating-point inaccuracies. In: Proc.
of the 37th IEEE/ACM Int’l Conf. on Software Engineering. Florence: IEEE, 2015. 529–539. [doi: 10.1109/ICSE.2015.70]
[20] Guo H, Rubio-González C. Efficient generation of error-inducing floating-point inputs via symbolic execution. In: Proc. of the 42nd Int’l
Conf. on Software Engineering. Seoul: IEEE, 2020. 1261–1272. [doi: 10.1145/3377811.3380359]
[21] Cadar C, Dunbar D, Engler D. KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. In:
Proc. of the 8th USENIX Conf. on Operating Systems Design and Implementation. San Diego: USENIX Association, 2008. 209–224.
[22] Kaas RE, Carlin BP, Gelman A, Neal RM. Markov chain Monte Carlo in practice: A roundtable discussion. The American Statistician,
1998, 52(2): 93–100. [doi: 10.1080/00031305.1998.10480547]
[23] Miao D, Laguna I, Rubio-González C. Input range generation for compiler-induced numerical inconsistencies. In: Proc. of the 38th ACM
Int’l Conf. on Supercomputing. Kyoto: ACM, 2024. 201–212. [doi: 10.1145/3650200.3656618]
[24] Ren XL, Ho M, Ming J, Lei Y, Li L. Unleashing the hidden power of compiler optimization on binary code difference: An empirical
study. In: Proc. of the 42nd ACM SIGPLAN Int’l Conf. on Programming Language Design and Implementation. ACM, 2021. 142–157.
[doi: 10.1145/3453483.3454035]
[25] Wang R, Zou DM, He XR, Xiong YF, Zhang L, Huang G. Detecting and fixing precision-specific operations for measuring floating-point
errors. In: Proc. of the 24th ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering. Seattle: ACM, 2016. 619–630. [doi: 10.
1145/2950290.2950355]
[26] IEEE. IEEE Std 754-2019 IEEE standard for floating-point arithmetic. 2019. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=8766229 [doi: 10.1109/IEEESTD.2019.8766229]
[27] Zhou H, Xue JL. Exploiting mixed SIMD parallelism by reducing data reorganization overhead. In: Proc. of the 2016 Int’l Symp. on
Code Generation and Optimization. Barcelona: ACM, 2016. 59–69. [doi: 10.1145/2854038.2854054]
于恒彪(1990-), 男, 博士, 副研究员, CCF 专业 黄春(1973-), 女, 博士, 研究员, 博士生导师, 主
会员, 主要研究领域为高性能计算, 程序分析. 要研究领域为高性能计算, 编译系统.
易昕(1992-), 男, 博士, 助理研究员, CCF 专业 尹帮虎(1989-), 男, 博士, 高级工程师, 主要研
会员, 主要研究领域为高性能计算, 程序分析. 究领域为高可信软件, 系统建模与仿真.
范小康(1987-), 男, 博士, 副研究员, 主要研究 王戟(1969-), 男, 博士, 研究员, 博士生导师,
领域为高性能计算, 编译优化. CCF 会士, 主要研究领域为软件方法学, 软件分
析与验证, 并行与分布计算.
唐滔(1984-), 男, 博士, 副研究员, 主要研究领
域为并行编程模型, 编译优化.

