Page 45 - 《软件学报》2025年第10期
P. 45

4442                                                      软件学报  2025  年第  36  卷第  10  期


                 议的数据传输时间大致相同, 握手时间的差异主要来自它们不同的计算性能.

                  6   总 结

                    Kyber 是一个基于格上困难问题的密钥封装机制              (KEM), 在  2023  年被美国国家标准与技术研究院         (NIST) 宣
                 布为第   1  个被标准化的    KEM. Kyber-AKE  是  Kyber 的设计者基于  Kyber KEM  构造的弱前向安全的认证密钥交
                 换  (AKE), 通过使用  3  个  IND-CCA  安全的  KEM  在两轮内协商会话密钥,
                    在本文中, 我们介绍了       Kyber-PFS-AKE, 这是一种新的    AKE  构造方法. Kyber-PFS-AKE  只使用了    IND-CPA
                 安全的公钥加密      (PKE) 方案, 从而简化了后量子     Kyber-AKE  的设计. 我们严格证明了基于       IND-CCA KEM  的  Kyber-
                 AKE  协议中某些操作是冗余的. 去除这些冗余后, 协议变得更加简化和高效. 通过仅使用具有被动安全性的                              PKE,
                 并通过   FO  变换中的类似技术处理被动安全的           PKE  的解密错误. 我们在     eCK-PFS-PSK  模型下证明了   Kyber-PFS-
                 AKE  的会话密钥不可区分性质, 以及完美的前向安全性等安全性质. 根据                    eCK-PFS-PSK  模型的定义, 以及清洁谓
                 词的要求, 保证了     Kyber-PFS-AKE  协议的完美前向安全性. 通用的从        IND-CPA  安全的  AKE  构造框架是无法做到
                 完美的前向安全性的. 我们使用量子安全为              165  比特的  Kyber-768. PKE  实现了  Kyber-PFS-AKE. 我们的实验结果
                 表明, 与  Kyber-PFS-AKE  相比, 我们的构造使得协议发起者的计算时间上降低了                38%, 在响应者计算时间上降低
                 了  30%.


                 References:
                  [1]   NIST.  Call  for  proposals.  2017.  https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
                     Call-for-Proposals
                  [2]   Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler G, Stehlé D. CRYSTALS-Kyber: A CCA-secure
                     module-lattice-based  KEM.  In:  Proc.  of  the  2018  IEEE  European  Symp.  on  Security  and  Privacy  (EuroS&P).  London:  IEEE,  2018.
                     353–367. [doi: 10.1109/EuroSP.2018.00032]
                  [3]   Alagic G, Apon D, Cooper D, Dang Q, Dang T, Kelsey J, Lichtinger J, Miller C, Moody D, Peralta R, Perlner R, Robinson A, Smith-
                     Tone D, Liu YK. Status report on the third round of the NIST post-quantum cryptography standardization process. US Department of
                     Commerce, NIST, 2022.
                  [4]   Narisada  S,  Uemura  S,  Okada  H,  Furue  H,  Aikawa  Y,  Fukushima  K.  Solving  McEliece-1409  in  one  day—Cryptanalysis  with  the
                     improved BJMM algorithm. In: Proc. of the 27th Int’l Conf. on Information Security. Arlington: Springer, 2025. 3–23. [doi: 10.1007/978-
                     3-031-75764-8_1]
                  [5]   Fujioka A, Suzuki K, Xagawa K, Yoneyama K. Strongly secure authenticated key exchange from factoring, codes, and lattices. In: Proc.
                     of the 15th Int’l Conf. on Practice and Theory in Public Key Cryptography. Darmstadt: Springer, 2012. 467–484. [doi: 10.1007/978-3-642-
                     30057-8_28]
                  [6]   Canetti R, Krawczyk H. Analysis of key-exchange protocols and their use for building secure channels. In: Proc. of the 2001 Int’l Conf.
                     on the Theory and Application of Cryptographic Techniques. Innsbruck: Springer, 2001. 453–474. [doi: 10.1007/3-540-44987-6_28]
                  [7]   Dowling B, Paterson KG. A cryptographic analysis of the WireGuard protocol. In: Proc. of the 16th Int’l Conf. on Applied Cryptography
                     and Network Security. Leuven: Springer, 2018. 3–21. [doi: 10.1007/978-3-319-93387-0_1]
                  [8]   Håstad J. Solving simultaneous modular equations of low degree. SIAM Journal of Computing, 1988, 17(2): 336–341. [doi: 10.1137/
                     0217019]
                  [9]   D’Anvers  JP,  Karmakar  A,  Roy  SS,  Vercauteren  F,  et  al.  Saber:  Mod-LWR  based  KEM  algorithm  specification  and  supporting
                     documentation. 2019. https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
                 [10]   Duman J, Hövelmanns K, Kiltz E, Lyubashevsky V, Seiler G. Faster lattice-based KEMs via a generic Fujisaki-Okamoto transform using
                     prefix hashing. In: Proc. of the 2021 ACM SIGSAC Conf. on Computer and Communications Security. Springer, 2021. 2722–2737. [doi:
                     10.1145/3460120.3484819]
                 [11]   Hülsing A, Ning KC, Schwabe P, Weber FJ, Zimmermann PR. Post-quantum WireGuard. In: Proc. of the 2021 IEEE Symp. on Security
                     and Privacy (SP). San Francisco: IEEE, 2021. 304–321. [doi: 10.1109/SP40001.2021.00030]
                 [12]   Paquin C, Stebila D, Tamvada G. Benchmarking post-quantum cryptography in TLS. In: Proc. of the 11th Int’l Conf. on Post-quantum
                     Cryptography. Paris: Springer, 2020. 72–91. [doi: 10.1007/978-3-030-44223-1_5]
                 [13]   Sosnowski M, Wiedner F, Hauser E, Steger L, Schoinianakis D, Gallenmüller S, Carle G. The performance of post-quantum TLS 1.3. In:
   40   41   42   43   44   45   46   47   48   49   50