Page 228 - 《软件学报》2025年第10期
P. 228
张建标 等: 面向联盟链的智能合约行为可信验证机制 4625
Industrial Informatics, 2021, 17(5): 3253–3262. [doi: 10.1109/TII.2020.3007657]
[6] Xu BY, Xu LD, Wang YX, Cai HM. A distributed dynamic authorisation method for Internet+ medical & healthcare data access based on
consortium blockchain. Enterprise Information Systems, 2022, 16(12): 1857–1875. [doi: 10.1080/17517575.2021.1922757]
[7] Ma R, Yang XT, Gao F. Discussion on smart contract under blockchains technology. In: Proc. of the 2022 Int’l Conf. on Industrial IoT,
Big Data and Supply Chain (IIoTBDSC). Beijing: IEEE, 2022. 338–342. [doi: 10.1109/IIoTBDSC57192.2022.00069]
[8] Owe O, Fazeldehkordi E. A lightweight approach to smart contracts supporting safety, security, and privacy. Journal of Logical and
Algebraic Methods in Programming, 2022, 127: 100772. [doi: 10.1016/j.jlamp.2022.100772]
[9] Li Y, Liu H, Yang ZQ, Wang B, Ren Q, Wang L, Chen BD. Protect your smart contract against unfair payment. In: Proc. of the 2020 Int’l
Symp. on Reliable Distributed Systems (SRDS). Shanghai: IEEE, 2020. 61–70. [doi: 10.1109/SRDS51746.2020.00014]
[10] Xiang DM, Lin YC, Nie LM, Zheng YW, Xu ZZ, Ding ZH, Liu Y. An empirical study of attack-related events in DeFi projects
development. Empirical Software Engineering, 2024, 29(2): 49. [doi: 10.1007/s10664-024-10447-7]
[11] Shen CX. To create a positive cyberspace by safeguarding network security with active immune trusted computing 3.0. Journal of
Information Security Research, 2018, 4(4): 282–302 (in Chinese with English abstract). [doi: 10.3969/j.issn.2096-1057.2018.04.001]
[12] Chen HS, Pendleton M, Njilla L, Xu SH. A survey on Ethereum systems security: Vulnerabilities, attacks, and defenses. ACM
Computing Surveys (CSUR), 2020, 53(3): 67. [doi: 10.1145/3391195]
[13] Cui ZQ, Yang HW, Chen X, Wang LZ. Research progress of security vulnerability detection of smart contracts. Ruan Jian Xue
Bao/Journal of Software, 2024, 35(5): 2235–2267 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/7046.htm [doi: 10.
13328/j.cnki.jos.007046]
[14] Wang W, Song JJ, Xu GQ, Li YD, Wang H, Su CH. ContractWard: Automated vulnerability detection models for Ethereum smart
contracts. IEEE Trans. on Network Science and Engineering, 2020, 8(2): 1133–1144.
[15] State Administration for Market Regulation, Standardization Administration. GB/T 22239-2019 Information security technology-baseline
for classified protection of cybersecurity. Beijing: Standards Press of China, 2019. 92 (in Chinese).
[16] Zheng PL, Zheng ZB, Luo XP. Park: Accelerating smart contract vulnerability detection via parallel-fork symbolic execution. In: Proc. of
the 31st ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Virtual: ACM, 2022. 740–751. [doi: 10.1145/3533767.3534395]
[17] Hu K, Zhu J, Ding Y, Bai XM, Huang JH. Smart contract engineering. Electronics, 2020, 9(12): 2042. [doi: 10.3390/electronics9122042]
[18] Kalra S, Goel S, Dhawan M, Sharma S. ZEUS: Analyzing safety of smart contracts. In: Proc. of the 2018 Network and Distributed
Systems Security (NDSS) Symp. San Diego, 2018. 1–12. [doi: 10.14722/ndss.2018.23082]
[19] Lv PH, Wang Y, Wang YZ, Zhou QH. Potential risk detection system of hyperledger fabric smart contract based on static analysis. In:
Proc. of the 2021 IEEE Symp. on Computers and Communications (ISCC). Athens: IEEE, 2021. 1–7. [doi: 10.1109/ISCC53001.2021.
9631249]
[20] Ding MJ, Li PR, Li SS, Zhang H. HFContractFuzzer: Fuzzing hyperledger fabric smart contracts for vulnerability detection. In: Proc. of
the 25th Int’l Conf. on Evaluation and Assessment in Software Engineering. Trondheim: ACM, 2021. 321–328. [doi: 10.1145/3463274.
3463351]
[21] Hu T, Liu XL, Chen T, Zhang XS, Huang XM, Niu WN, Lu JZ, Zhou K, Liu Y. Transaction-based classification and detection approach
for Ethereum smart contract. Information Processing & Management, 2021, 58(2): 102462. [doi: 10.1016/j.ipm.2020.102462]
[22] Liu ZG, Qian P, Wang XY, Zhuang Y, Qiu L, Wang X. Combining graph neural networks with expert knowledge for smart contract
vulnerability detection. IEEE Trans. on Knowledge & Data Engineering, 2023, 35(2): 1296–1310. [doi: 10.1109/TKDE.2021.3095196]
[23] Chen P, Shi PC, Xu J, Fu X, Li LH, Zhong T, Xiang LL, Kong JZ. TeeSwap: Private data exchange using smart contract and trusted
execution environment. In: Proc. of the 23rd Int’l Conf. on High Performance Computing & Communications; the 7th Int’l Conf. on Data
Science & Systems; the 19th Int’l Conf. on Smart City; the 7th Int’l Conf. on Dependability in Sensor, Cloud & Big Data Systems &
Application. Haikou: IEEE, 2021. 237–244. [doi: 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00057]
[24] Cheng R, Zhang F, Kos J, He W, Hynes N, Johnson N, Juels A, Miller A, Song D. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts. In: Proc. of the 2019 IEEE European Symp. on Security and Privacy (EuroS&P). Stockholm:
IEEE, 2019. 185–200. [doi: 10.1109/EuroSP.2019.00023]
[25] Yan Y, Wei CZ, Guo XP, Lu XM, Zheng XF, Liu Q, Zhou CH, Song XY, Zhao BR, Zhang H, Jiang GF. Confidentiality support over
financial grade consortium blockchain. In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020.
2227–2240. [doi: 10.1145/3318464.3386127]
[26] Brandenburger M, Cachin C, Kapitza R, Sorniotti A. Trusted computing meets blockchain: Rollback attacks and a solution for
Hyperledger Fabric. In: Proc. of the 38th Symp. on Reliable Distributed Systems (SRDS). Lyon: IEEE, 2019. 324–333. [doi: 10.1109/
SRDS47363.2019.00045]

