Page 159 - 《软件学报》2025年第10期
P. 159
4556 软件学报 2025 年第 36 卷第 10 期
References:
[1] Miller VS. Use of elliptic curves in cryptography. In: Williams HC, ed. Advances in Cryptology—CRYPTO 1985 Proc. Berlin: Springer,
1986. 417–426. [doi: 10.1007/3-540-39799-X_31]
[2] Koblitz N. Elliptic curve cryptosystems. Mathematics of Computation, 1987, 48(177): 203–209. [doi: 10.1090/S0025-5718-1987-
0866109-5]
[3] Hankerson D, Menezes A, Vanstone S. Guide to Elliptic Curve Cryptography. New York: Springer, 2004. [doi: 10.1007/b97644]
[4] Okeya K, Takagi T. The width-w NAF method provides small memory and fast elliptic scalar multiplications secure against side channel
attacks. In: Joye M, ed. Topics in Cryptology—CT-RSA 2003. San Francisco: Springer, 2003. 328–343. [doi: 10.1007/3-540-36563-
x_23]
[5] Anagreh M, Vainikko E, Laud P. Accelerate performance for elliptic curve scalar multiplication based on NAF by parallel computing. In:
Proc. of the 5th Int’l Conf. on Information Systems Security and Privacy. Prague: SciTePress, 2019. 238–245. [doi: 10.5220/
0007312702380245]
[6] Hu XH, Zheng X, Zhang SS, Li WJ, Cai ST, Xiong XM. A high-performance elliptic curve cryptographic processor of SM2 over GF(P).
Electronics, 2019, 8(4): 431. [doi: 10.3390/electronics8040431]
[7] Kocher P, Jaffe J, Jun B. Differential power analysis. In: Proc. of the 19th Annual Int’l Cryptology Conf. on Advances in Cryptology.
Santa Barbara: Springer, 1999. 388–397. [doi: 10.1007/3-540-48405-1_25]
[8] Cao JZ, Cheng QF, Weng J. EHNP strikes back: Analyzing SM2 implementations. In: Proc. of the 13th Int’l Conf. on Cryptology in
Africa. Fes: Springer, 2022. 576–600. [doi: 10.1007/978-3-031-17433-9_25]
[9] Ma ZQ, Li SG, Lin JQ, Cai QW, Fan SQ, Zhang F, Luo B. Another lattice attack against ECDSA with the wNAF to recover more bits per
signature. In: Proc. of the 18th EAI Int’l Conf. on Security and Privacy in Communication Networks. Springer, 2022. 111–129. [doi: 10.
1007/978-3-031-25538-0_7]
[10] Zhang T, Fan MY, Wang GW, Lu XJ. Protection against power analysis attack for ECC on smartcard. Computer Engineering, 2007,
33(14): 125–127. (in Chinese with English abstract). [doi: 10.3969/j.issn.1000-3428.2007.14.044]
[11] Yao JB, Yan CQ, Zhang T. Elliptic curve cryptography algorithm against energy attack. In: Proc. of the 2021 IEEE Conf. on
Telecommunications, Optics and Computer Science (TOCS). Shenyang: IEEE, 2021. 224–227. [doi: 10.1109/tocs53301.2021.9688886]
[12] Shi L, Xu M. DWNAF: A dynamic window NAF scalar multiplication with threshold. Computer Science, 2017, 44(10): 159–164. (in
Chinese with English abstract). [doi: 10.11896/j.issn.1002-137X.2017.10.030]
[13] Lee MK. SPA-resistant simultaneous scalar multiplication. In: Proc. of the 2005 Int’l Conf. on Computational Science and Its
Applications. Singapore: Springer, 2005. 314–321. [doi: 10.1007/11424826_33]
[14] Ciet M, Joye M. (Virtually) free randomization techniques for elliptic curve cryptography. In: Proc. of the 5th Int’l Conf. on Information
and Communications Security. Huhehaote: Springer, 2003. 348–359. [doi: 10.1007/978-3-540-39927-8_32]
[15] Liu D, Tan ZY, Dai YQ. New elliptic curve multi-scalar multiplication algorithm for a pair of integers to resist SPA. In: Proc. of the 4th
Int’l Conf. on Information Security and Cryptology. Beijing: Springer, 2008. 253–264. [doi: 10.1007/978-3-642-01440-6_20]
[16] Chen HY, Ma CG. A multiple scalar multiplications algorithm in the elliptic curve cryptosystem. Ruan Jian Xue Bao/Journal of Software,
2011, 22(4): 782–788. (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3730.htm [doi: 10.3724/SP.J.1001.2011.
03730]
[17] Akishita T, Katagi M, Kitamura I. SPA-resistant scalar multiplication on hyperelliptic curve cryptosystems combining divisor
decomposition technique and joint regular form. In: Proc. of the 8th Int’l Workshop on Cryptographic Hardware and Embedded Systems.
Yokohama: Springer, 2006. 148–159. [doi: 10.1007/11894063_12]
[18] Goubin L. A refined power-analysis attack on elliptic curve cryptosystems. In: Proc. of the 6th Int’l Workshop on Public Key
Cryptography. Miami: Springer, 2003. 199–211. [doi: 10.1007/3-540-36288-6_15]
[19] Akishita T, Takagi T. Zero-value point attacks on elliptic curve cryptosystem. In: Proc. of the 6th Int’l Conf. on Information Security.
Bristol: Springer, 2003. 218–233. [doi: 10.1007/10958513_17]
[20] Yarom Y, Falkner K. Flush+Reload: A high resolution, low noise, L3 cache side-channel attack. In: Proc. of the 23rd USENIX Security
Symp. San Diego: USENIX Association, 2014. 719–732.
[21] Fan JF, Verbauwhede I. An updated survey on secure ECC implementations: Attacks, countermeasures and cost. In: Naccache D, ed.
Cryptography and Security: From Theory to Applications: Essays Dedicated to Jean-Jacques Quisquater on the Occasion of His 65th
Birthday. Berlin: Springer, 2012. 265–282. [doi: 10.1007/978-3-642-28368-0_18]

