Page 143 - 《软件学报》2025年第10期
P. 143

4540                                                      软件学报  2025  年第  36  卷第  10  期


                  [4]   Vadhan SP. The complexity of counting in sparse, regular, and planar graphs. SIAM Journal on Computing, 2001, 31(2): 398–427. [doi:
                     10.1137/S0097539797321602]
                  [5]   Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press, 2016. 587–614.
                  [6]   Valiant LG. The complexity of computing the permanent. Theoretical Computer Science, 1979, 8(2): 189–201. [doi: 10.1016/0304-3975
                     (79)90044-6]
                  [7]   Patel V, Regts G. Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM Journal
                     on Computing, 2017, 46(6): 1893–1919. [doi: 10.1137/16M1101003]
                  [8]   Kolmogorov  V.  A  faster  approximation  algorithm  for  the  Gibbs  partition  function.  In:  Proc.  of  the  31st  Conf.  on  Learning  Theory.
                     Stockholm: PMLR, 2018. 228–249.
                  [9]   Qiu GL, Zhang CH. Approximability of partition functions of ferromagnetic two-state spin systems. Computer Science, 2020, 47(5):
                     22–26 (in Chinese with English abstract). [doi: 10.11896/jsjkx.200200119]
                 [10]   Bai ZL, Wang HP, Cao YZ, Wang LL. Fast sampling algorithms for spin systems on trees. Chinese Journal of Computers, 2022, 45(10):
                     2093–2116 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2022.02093]
                 [11]   Laba HP, Tkachuk VM. Calculation of partition function of Ising model on quantum computer. Physics Letters A, 2023, 491: 129213.
                     [doi: 10.1016/j.physleta.2023.129213]
                 [12]   Cornelissen A, Hamoudi Y. A sublinear-time quantum algorithm for approximating partition functions. In: Proc. of the 2023 Annual
                     ACM-SIAM Symp. on Discrete Algorithms (SODA). Florence: SIAM, 2023. 1245–1264. [doi: 10.1137/1.9781611977554.ch46]
                 [13]   Barvinok A. Combinatorics and Complexity of Partition Functions. Cham: Springer, 2016. 1–7. [doi: 10.1007/978-3-319-51829-9]
                 [14]   Dyer M, Greenhill C. The complexity of counting graph homomorphisms. Random Structures & Algorithms, 2000, 17(3–4): 260–289.
                     [doi: 10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W]
                 [15]   Goldberg LA, Grohe M, Jerrum M, Thurley M. A complexity dichotomy for partition functions with mixed signs. SIAM Journal on
                     Computing, 2010, 39(7): 3336–3402. [doi: 10.1137/090757496]
                 [16]   Bulatov A, Grohe M. The complexity of partition functions. Theoretical Computer Science, 2005, 348(2-3): 148–186. [doi: 10.1016/j.tcs.
                     2005.09.011]
                 [17]   Cai JY, Kowalczyk M. Spin systems on k-regular graphs with complex edge functions. Theoretical Computer Science, 2012, 461: 2–16.
                     [doi: 10.1016/j.tcs.2012.01.021]
                 [18]   Cai JY, Fu ZG, Girstmair K, Kowalczyk M. A complexity trichotomy for k-regular asymmetric spin systems using number theory. In:
                     Proc.  of  the  9th  Innovations  in  Theoretical  Computer  Science  Conf.  (ITCS  2018).  Cambridge:  ITCS,  2018.  2:1–2:22.  [doi:  10.4230/
                     LIPIcs.ITCS.2018.2]
                 [19]   Cai  JY,  Kowalczyk  M.  Partition  functions  on  k-regular  graphs  with  {0,  1}-vertex  assignments  and  real  edge  functions.  Theoretical
                     Computer Science, 2013, 494: 63–74. [doi: 10.1016/j.tcs.2012.12.043]
                 [20]   Kowalczyk M, Cai JY. Holant problems for 3-regular graphs with complex edge functions. Theory of Computing Systems, 2016, 59(1):
                     133–158. [doi: 10.1007/s00224-016-9671-7]
                 [21]   Impagliazzo R, Paturi R, Zane F. Which problems have strongly exponential complexity? Journal of Computer and System Sciences,
                     2001, 63(4): 512–530. [doi: 10.1006/jcss.2001.1774]
                 [22]   Impagliazzo R, Paturi R. On the complexity of k-SAT. Journal of Computer and System Sciences, 2001, 62(2): 367–375. [doi: 10.1006/
                     jcss.2000.1727]
                 [23]   Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S. Lower bounds based on the exponential-
                     time hypothesis. In: Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S, eds. Parameterized
                     Algorithms. Cham: Springer, 2015. 467–521. [doi: 10.1007/978-3-319-21275-3_14]
                 [24]   Dell H, Husfeldt T, Marx D, Taslaman N, Wahlén M. Exponential time complexity of the permanent and the Tutte polynomial. ACM
                     Trans. on Algorithms (TALG), 2014, 10(4): 21. [doi: 10.1145/2635812]
                 [25]   Curticapean R. Block interpolation: A framework for tight exponential-time counting complexity. Information and Computation, 2018,
                     261: 265–280. [doi: 10.1016/j.ic.2018.02.008]
                 [26]   Liu Y. Exponential time complexity of the complex weighted Boolean #CSP. In: Wu WL, Tong G, eds. Computing and Combinatorics:
                     29th Int’l Conf. Cham: Springer, 2024. 83–96. [doi: 10.1007/978-3-031-49190-0_6]
                 [27]   Björklund A, Kaski P. The fine-grained complexity of computing the Tutte polynomial of a linear matroid. In: Proc. of the 32nd Annual
                     ACM-SIAM Symp. on Discrete Algorithms. Philadelphia: SIAM, 2021. 2333–2345.
                 [28]   Brand C, Dell H, Roth M. Fine-grained dichotomies for the Tutte plane and Boolean #CSP. Algorithmica, 2019, 81(2): 541–556. [doi: 10.
                     1007/s00453-018-0472-z]
   138   139   140   141   142   143   144   145   146   147   148