Page 126 - 《软件学报》2025年第10期
P. 126

王御天 等: 基于多父链辅助工作量证明共识机制的后量子区块链系统                                                4523


                 用  Sha256  和  Scrypt 哈希函数的区块链作为父链, 对子链进行辅助共识, 共识机制增加了子链的算力来源, 提高了
                 现存矿池和矿工算力的利用率. 针对这种共识机制, 设计同时可以稳定两类父链出块比例和稳定出块时间的难度
                 调整算法, 并可以抵抗算力突增突减等攻击. 在交易中采用基于素阶数域的                       Dilithium-Prime 后量子数字签名, 大幅
                 减少后量子签名算法所基于底层数学问题的代数结构, 增加了交易的后量子安全高可靠性. 最后, 给出了系统的理
                 论分析和实验验证.


                 References:
                  [1]   Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008. https://bitcoin.org/bitcoin.pdf
                  [2]   Dong YF, Fang BY, Liang ZC, Zhao YL. Efficient lattice-based digital signature scheme in large-galois-group prime-degree prime-ideal
                     field. Ruan Jian Xue Bao/Journal of Software, 2025, 36(2): 776–804 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/
                     7164.htm [doi: 10.13328/j.cnki.jos.007164]
                  [3]   Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 1999,
                     41(2): 303–332. [doi: 10.1137/S0036144598347011]
                  [4]   National Institute of Standards and Technology. PQC standardization process: Announcing four candidates to be standardized, plus fourth
                     round candidates. 2022. https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
                  [5]   Bai S, Ducas L, Kiltz E, et al. CRYSTALS-Dilithium algorithm specifications and supporting documentation (Version 3.1). 2023. https://
                     csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
                  [6]   Fouque PA, Hoffstein J, Kirchner P, Lyubashevsky V, Pornin T, Prest T, Ricosset T, Seiler G, Whyte W, Zhang ZF. Falcon: Fast-Fourier
                     lattice-based compact signatures over NTRU (Specification v1.2). 2020. https://falcon-sign.info/falcon.pdf
                  [7]   Torres  WAA,  Steinfeld  R,  Sakzad  A,  Liu  JK,  Kuchta  V,  Bhattacharjee  N,  Au  MH,  Cheng  J.  Post-quantum  one-time  linkable  ring
                     signature and application to ring confidential transactions in blockchain (Lattice RingCT v1.0). In: Proc. of the 23rd Australasian Conf. on
                     Information Security and Privacy. Wollongong: Springer, 2018. 558–576. [doi: 10.1007/978-3-319-93638-3_32]
                  [8]   AyakaEna. Whitepaper draft. 2022. https://github.com/ArielCoinOrg/docs/blob/main/whitepaper.md
                  [9]   HCASH Foundation. Hcash technical yellow paper. 2018. https://h.cash/themes/zh-cn/images/YellowPaper-1.01-Chinese-1.pdf
                 [10]   Ding JT. A new proof of work for blockchain based on random multivariate quadratic equations. In: Applied Cryptography and Network
                     Security Workshops: ACNS 2019 Satellite Workshops. Bogota: Springer, 2019. 97–107. [doi: 10.1007/978-3-030-29729-9_5]
                 [11]   Jackalys. Quantum Resistant Ledger (QRL). 2016. https://github.com/theQRL/Whitepaper/blob/master/QRL_whitepaper.pdf
                 [12]   Zweil M. Mochimo: Post-quantum currency. 2018. https://mochimo.org/assets/files/mochimo_wp_EN.pdf
                 [13]   Liu YZ, Liu JW, Zhang ZY, Xu TG, Yu H. Overview on blockchain consensus mechanisms. Journal of Cryptologic Research, 2019, 6(4):
                     395–432 (in Chinese with English abstract). [doi: 10.13868/j.cnki.jcr.000311]
                 [14]   Judmayer  A,  Zamyatin  A,  Stifter  N,  Voyiatzis  AG,  Weippl  E.  Merged  mining:  Curse  or  cure?  In:  Data  Privacy  Management,
                     Cryptocurrencies  and  Blockchain  Technology:  ESORICS  2017  Int’l  Workshops,  DPM  2017  and  CBT  2017.  Oslo:  Springer,  2017.
                     316–333. [doi: 10.1007/978-3-319-67816-0_18]
                 [15]   Noda  S,  Okumura  K,  Hashimoto  Y.  An  economic  analysis  of  difficulty  adjustment  algorithms  in  proof-of-work  blockchain  systems.
                     2022. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3410460
                 [16]   Cortesi E, Bruschi F, Secci S, Taktak S. A new approach for Bitcoin pool-hopping detection. Computer Networks, 2022, 205: 108758.
                     [doi: 10.1016/j.comnet.2021.108758]
                 [17]   Bistarelli  S,  Mercanti  I,  Santini  F.  An  analysis  of  non-standard  bitcoin  transactions.  In:  Proc.  of  the 2018  Crypto  Valley  Conf.  on
                     Blockchain Technology (CVCBT 2018). Zug: IEEE, 2018. 93–96. [doi: 10.1109/CVCBT.2018.00016]
                 [18]   Bernstein DJ, Chuengsatiansup C, Lange T, Van Vredendaal C. NTRU prime: Reducing attack surface at low cost. In: Proc. of the 24th
                     Int’l Conf. on Selected Areas in Cryptography (SAC 2017). Ottawa: Springer, 2018. 235–260. [doi: 10.1007/978-3-319-72565-9_12]
                 [19]   Bernstein DJ, Brumley B, Chen MS, et al. NTRU Prime: Round 3. 2023. https://csrc.nist.gov/Projects/post-quantum-cryptography/post-
                     quantum-cryptography-standardization/round-3-submissions
                 [20]   Schnorr CP. Efficient signature generation by smart cards. Journal of Cryptology, 1991, 4(3): 161–174. [doi: 10.1007/BF00196725]
                 [21]   Aponte-Novoa FA, Orozco ALS, Villanueva-Polanco R, Wightman P. The 51% attack on blockchains: A mining behavior study. IEEE
                     Access, 2021, 9: 140549–140564. [doi: 10.1109/ACCESS.2021.3119291]
                 [22]   Tian GH, Hu YH, Chen XF. Research progress on attack and defense techniques in block-chain system. Ruan Jian Xue Bao/Journal of
                     Software, 2021, 32(5): 1495–1525 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6213.htm [doi: 10.13328/j.cnki.
                     jos.006213]
   121   122   123   124   125   126   127   128   129   130   131