Page 80 - 《软件学报》2025年第7期
P. 80
陈元亮 等: 分布式系统动态测试技术研究综述 3001
3483577]
[71] Kim BH, Kim T, Lie D. Modulo: Finding convergence failure bugs in distributed systems with divergence resync models. In: Proc. of
the 31st USENIX Annual Technical Conf. Boston: USENIX Association, 2022. 383–398.
[72] Lu J, Li HF, Liu C, Li L, Cheng K. Detecting missing-permission-check vulnerabilities in distributed cloud systems. In: Proc. of the
2022 ACM SIGSAC Conf. on Computer and Communications Security. Los Angeles: ACM, 2022. 2145–2158. [doi: 10.1145/3548606.
3560589]
[73] Lu RM, Xu E, Zhang YM, Zhu FY, Zhu ZS, Wang MT, Zhu ZP, Xue GT, Shu JW, Li ML, Wu JS. PERSEUS: A fail-slow detection
framework for cloud storage systems. In: Proc. of the 21st USENIX Conf. on File and Storage Technologies. Santa Clara: USENIX
Association, 2023. 4. [doi: 10.5555/3585938.3585942]
[74] Wang D, Dou WS, Gao Y, Wu CN, Wei J, Huang T. Model checking guided testing for distributed systems. In: Proc. of the 18th
European Conf. on Computer Systems. Rome: ACM, 2023. 127–143. [doi: 10.1145/3552326.3587442]
[75] Ma FC, Chen YL, Ren M, Zhou YH, Jiang Y, Chen T, Li HZ, Sun JG. LOKI: State-aware fuzzing framework for the implementation of
blockchain consensus protocols. In: Proc. of the 2023 Network and Distributed System Security Symp. San Diego: NDSS, 2023. [doi: 10.
14722/ndss.2023.24078]
[76] Chen YL, Ma FC, Zhou YH, Jiang Y, Chen T, Sun JG. Tyr: Finding consensus failure bugs in blockchain system with behaviour
divergent model. In: Proc. of the 2023 IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2023. 2517–2532. [doi: 10.1109/
SP46215.2023.10179386]
[77] Meng RJ, Pîrlea G, Roychoudhury A, Sergey I. Greybox fuzzing of distributed systems. In: Proc. of the 2023 ACM SIGSAC Conf. on
Computer and Communications Security. Copenhagen: ACM, 2023. 1615–1629. [doi: 10.1145/3576915.3623097]
[78] Ma FC, Chen YL, Zhou YH, Sun JX, Su Z, Jiang Y, Sun JG, Li HZ. Phoenix: Detect and locate resilience issues in blockchain via
context-sensitive chaos. In: Proc. of the 2023 ACM SIGSAC Conf. on Computer and Communications Security. Copenhagen: ACM,
2023. 1182–1196. [doi: 10.1145/3576915.3623071]
[79] Gao Y, Dou WS, Wang D, Feng WH, Wei J, Zhong H, Huang T. Coverage guided fault injection for cloud systems. In: Proc. of the 45th
Int’l Conf. on Software Engineering. Melbourne: IEEE, 2023. 2211–2223. [doi: 10.1109/ICSE48619.2023.00186]
[80] Li JQ, Li SY, Li KY, Luo FL, Yu HF, Li SS, Li X. ECFuzz: Effective configuration fuzzing for large-scale systems. In: Proc. of the 46th
IEEE/ACM Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 48. [doi: 10.1145/3597503.3623315]
[81] Serebryany K, Bruening D, Potapenko A, Vyukov D. AddressSanitizer: A fast address sanity checker. In: Proc. of the 2012 USENIX
Conf. on Technical Conf. Boston: USENIX Association, 2012. 309–318. [doi: 10.5555/2342821.2342849]
[82] Panda B, Srinivasan D, Ke H, Gupta K, Khot V, Gunawi HS. IASO: A fail-slow detection and mitigation framework for distributed
storage services. In: Proc. of the 2019 USENIX Conf. on USENIX Annual Technical Conf. Renton: USENIX Association, 2019. 47–61.
[doi: 10.5555/3358807.3358812]
[83] DBSCAN. Density-based spatial clustering of applications with noise. 2024. https://blog.csdn.net/hyangyuchen/article/details/1431
35345
[84] Machado N, Maia F, Neves F, Coelho F, Pereira J. Minha: Large-scale distributed systems testing made practical. 2020. [doi: 10.4230/
LIPICS.OPODIS.2019.11J]
[85] Carroll JJ, Anand P, Guo D. Preproduction deploys: Cloud-native integration testing. In: Proc. of the 2021 IEEE Cloud Summit.
Hempstead: IEEE, 2021. 41–48. [doi: 10.1109/IEEECloudSummit52029.2021.00015]
[86] Alibaba. ChaosBlade. 2024. https://github.com/chaosblade-io/chaosblade
[87] Núñez A, Cañizares PC, Núñez M, Hierons RM. TEA-Cloud: A formal framework for testing cloud computing systems. IEEE Trans. on
Reliability, 2021, 70(1): 261–284. [doi: 10.1109/TR.2020.3011512]
[88] Bodnarchuk R, Bunt R. A synthetic workload model for a distributed system file server. In: Proc. of the 1991 ACM SIGMETRICS
Conf. on Measurement and Modeling of Computer Systems. San Diego: ACM, 1991. 50–59. [doi: 10.1145/107971.107978]
[89] Yin JW, Lu XJ, Zhao XK, Chen HW, Liu X. BURSE: A bursty and self-similar workload generator for cloud computing. IEEE Trans.
on Parallel and Distributed Systems, 2015, 26(3): 668–680. [doi: 10.1109/TPDS.2014.2315204]
[90] Swagger. API testing. 2024. https://swagger.io/solutions/api-testing/
TM
[91] Halili EH. Apache JMeter . 2024. https://jmeter.apache.org/
[92] Pact. Contract testing. 2024. https://docs.pact.io/
[93] Brown MD, Schultz B. Techniques for fuzzing embedded and distributed systems. Georgia Research Tech Institute. 2020. https://www.
itea.org/wp-content/uploads/2021/01/FuzzingEmbeddedDistributedSystems_Brown.pdf [doi: 10.1145/3538644]
[94] Eddington M. Peach fuzzer: Discover unknown vulnerabilities. 2024. https://peachtech.gitlab.io/peach-fuzzer-community/
[95] Liu HP, Li GP, Lukman JF, Li JX, Lu S, Gunawi HS, Tian C. DCatch: Automatically detecting distributed concurrency bugs in cloud

