Page 80 - 《软件学报》2025年第7期
P. 80

陈元亮 等: 分布式系统动态测试技术研究综述                                                          3001


                      3483577]
                 [71]  Kim BH, Kim T, Lie D. Modulo: Finding convergence failure bugs in distributed systems with divergence resync models. In: Proc. of
                      the 31st USENIX Annual Technical Conf. Boston: USENIX Association, 2022. 383–398.
                 [72]  Lu J, Li HF, Liu C, Li L, Cheng K. Detecting missing-permission-check vulnerabilities in distributed cloud systems. In: Proc. of the
                      2022 ACM SIGSAC Conf. on Computer and Communications Security. Los Angeles: ACM, 2022. 2145–2158. [doi: 10.1145/3548606.
                      3560589]
                 [73]  Lu RM, Xu E, Zhang YM, Zhu FY, Zhu ZS, Wang MT, Zhu ZP, Xue GT, Shu JW, Li ML, Wu JS. PERSEUS: A fail-slow detection
                      framework for cloud storage systems. In: Proc. of the 21st USENIX Conf. on File and Storage Technologies. Santa Clara: USENIX
                      Association, 2023. 4. [doi: 10.5555/3585938.3585942]
                 [74]  Wang D, Dou WS, Gao Y, Wu CN, Wei J, Huang T. Model checking guided testing for distributed systems. In: Proc. of the 18th
                      European Conf. on Computer Systems. Rome: ACM, 2023. 127–143. [doi: 10.1145/3552326.3587442]
                 [75]  Ma FC, Chen YL, Ren M, Zhou YH, Jiang Y, Chen T, Li HZ, Sun JG. LOKI: State-aware fuzzing framework for the implementation of
                      blockchain consensus protocols. In: Proc. of the 2023 Network and Distributed System Security Symp. San Diego: NDSS, 2023. [doi: 10.
                      14722/ndss.2023.24078]
                 [76]  Chen  YL,  Ma  FC,  Zhou  YH,  Jiang  Y,  Chen  T,  Sun  JG.  Tyr:  Finding  consensus  failure  bugs  in  blockchain  system  with  behaviour
                      divergent model. In: Proc. of the 2023 IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2023. 2517–2532. [doi: 10.1109/
                      SP46215.2023.10179386]
                 [77]  Meng RJ, Pîrlea G, Roychoudhury A, Sergey I. Greybox fuzzing of distributed systems. In: Proc. of the 2023 ACM SIGSAC Conf. on
                      Computer and Communications Security. Copenhagen: ACM, 2023. 1615–1629. [doi: 10.1145/3576915.3623097]
                 [78]  Ma FC, Chen YL, Zhou YH, Sun JX, Su Z, Jiang Y, Sun JG, Li HZ. Phoenix: Detect and locate resilience issues in blockchain via
                      context-sensitive chaos. In: Proc. of the 2023 ACM SIGSAC Conf. on Computer and Communications Security. Copenhagen: ACM,
                      2023. 1182–1196. [doi: 10.1145/3576915.3623071]
                 [79]  Gao Y, Dou WS, Wang D, Feng WH, Wei J, Zhong H, Huang T. Coverage guided fault injection for cloud systems. In: Proc. of the 45th
                      Int’l Conf. on Software Engineering. Melbourne: IEEE, 2023. 2211–2223. [doi: 10.1109/ICSE48619.2023.00186]
                 [80]  Li JQ, Li SY, Li KY, Luo FL, Yu HF, Li SS, Li X. ECFuzz: Effective configuration fuzzing for large-scale systems. In: Proc. of the 46th
                      IEEE/ACM Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 48. [doi: 10.1145/3597503.3623315]
                 [81]  Serebryany K, Bruening D, Potapenko A, Vyukov D. AddressSanitizer: A fast address sanity checker. In: Proc. of the 2012 USENIX
                      Conf. on Technical Conf. Boston: USENIX Association, 2012. 309–318. [doi: 10.5555/2342821.2342849]
                 [82]  Panda B, Srinivasan D, Ke H, Gupta K, Khot V, Gunawi HS. IASO: A fail-slow detection and mitigation framework for distributed
                      storage services. In: Proc. of the 2019 USENIX Conf. on USENIX Annual Technical Conf. Renton: USENIX Association, 2019. 47–61.
                      [doi: 10.5555/3358807.3358812]
                 [83]  DBSCAN.  Density-based  spatial  clustering  of  applications  with  noise.  2024.  https://blog.csdn.net/hyangyuchen/article/details/1431
                      35345
                 [84]  Machado N, Maia F, Neves F, Coelho F, Pereira J. Minha: Large-scale distributed systems testing made practical. 2020. [doi: 10.4230/
                      LIPICS.OPODIS.2019.11J]
                 [85]  Carroll  JJ,  Anand  P,  Guo  D.  Preproduction  deploys:  Cloud-native  integration  testing.  In:  Proc.  of  the  2021  IEEE  Cloud  Summit.
                      Hempstead: IEEE, 2021. 41–48. [doi: 10.1109/IEEECloudSummit52029.2021.00015]
                 [86]  Alibaba. ChaosBlade. 2024. https://github.com/chaosblade-io/chaosblade
                 [87]  Núñez A, Cañizares PC, Núñez M, Hierons RM. TEA-Cloud: A formal framework for testing cloud computing systems. IEEE Trans. on
                      Reliability, 2021, 70(1): 261–284. [doi: 10.1109/TR.2020.3011512]
                 [88]  Bodnarchuk R, Bunt R. A synthetic workload model for a distributed system file server. In: Proc. of the 1991 ACM SIGMETRICS
                      Conf. on Measurement and Modeling of Computer Systems. San Diego: ACM, 1991. 50–59. [doi: 10.1145/107971.107978]
                 [89]  Yin JW, Lu XJ, Zhao XK, Chen HW, Liu X. BURSE: A bursty and self-similar workload generator for cloud computing. IEEE Trans.
                      on Parallel and Distributed Systems, 2015, 26(3): 668–680. [doi: 10.1109/TPDS.2014.2315204]
                 [90]  Swagger. API testing. 2024. https://swagger.io/solutions/api-testing/
                                      TM
                 [91]  Halili EH. Apache JMeter . 2024. https://jmeter.apache.org/
                 [92]  Pact. Contract testing. 2024. https://docs.pact.io/
                 [93]  Brown MD, Schultz B. Techniques for fuzzing embedded and distributed systems. Georgia Research Tech Institute. 2020. https://www.
                      itea.org/wp-content/uploads/2021/01/FuzzingEmbeddedDistributedSystems_Brown.pdf [doi: 10.1145/3538644]
                 [94]  Eddington M. Peach fuzzer: Discover unknown vulnerabilities. 2024. https://peachtech.gitlab.io/peach-fuzzer-community/
                 [95]  Liu HP, Li GP, Lukman JF, Li JX, Lu S, Gunawi HS, Tian C. DCatch: Automatically detecting distributed concurrency bugs in cloud
   75   76   77   78   79   80   81   82   83   84   85