Page 41 - 《软件学报》2025年第7期
P. 41
2962 软件学报 2025 年第 36 卷第 7 期
of Software, 2025, 36(1): 399–423 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/7048.htm [doi: 10.13328/j.cnki.
jos.007048]
[22] Even-Mendoza K, Sharma A, Donaldson AF, Cadar C. GrayC: Greybox fuzzing of compilers and analysers for C. In: Proc. of the 32nd
ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 1219–1231. [doi: 10.1145/3597926.3598130]
[23] Srivastava P, Payer M. Gramatron: Effective grammar-aware fuzzing. In: Proc. of the 30th ACM SIGSOFT Int’l Symp. on Software
Testing and Analysis. ACM, 2021. 244–256. [doi: 10.1145/3460319.3464814]
[24] Parr TJ, Quong RW. ANTLR: A predicated-LL(k) parser generator. Software: Practice and Experience, 1995, 25(7): 789–810. [doi: 10.
1002/spe.4380250705]
[25] Max Brunsfeld. Tree-sitter. 2024. https://tree-sitter.github.io/tree-sitter/
[26] Bünder H. Decoupling language and editor-the impact of the language server protocol on textual domain-specific languages. In: Proc. of
the 7th Int’l Conf. on Model-Driven Engineering and Software Development. Prague: ScitePress, 2019. 129–140. [doi: 10.5220/
0007556301290140]
[27] Miller BP, Fredriksen L, So B. An empirical study of the reliability of UNIX utilities. Communications of the ACM, 1990, 33(12): 32–44.
[doi: 10.1145/96267.96279]
[28] Yun I, Lee S, Xu M, Jang Y, Kim T. QSYM: A practical concolic execution engine tailored for hybrid fuzzing. In: Proc. of the 27th
USENIX Conf. on Security Symp. Baltimore: USENIX Association, 2018. 745–761.
[29] Chen P, Liu JZ, Chen H. Matryoshka: Fuzzing deeply nested branches. In: Proc. of the 2019 ACM SIGSAC Conf. on Computer and
Communications Security. London: ACM, 2019. 499–513. [doi: 10.1145/3319535.3363225]
[30] Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T. Redqueen: Fuzzing with input-to-state correspondence. In: Proc. of the 26th
Network and Distributed System Security Symp. 2019. [doi: 10.14722/ndss.2019.23371]
[31] Lyu CY, Ji SL, Zhang C, Li YW, Lee WH, Song Y, Beyah R. MOPT: Optimized mutation scheduling for fuzzers. In: Proc. of the 28th
USENIX Conf. on Security Symp. Santa Clara: USENIX Association, 2019. 1949–1966.
[32] Chen YQ, Schwahn O, Natella R, Bradbury M, Suri N. SlowCoach: Mutating code to simulate performance bugs. In: Proc. of the 33rd
IEEE Int’l Symp. on Software Reliability Engineering. Charlotte: IEEE, 2022. 274–285. [doi: 10.1109/ISSRE55969.2022.00035]
[33] Blair W, Mambretti A, Arshad S, Weissbacher M, Robertson W, Kirda E, Egele M. HotFuzz: Discovering algorithmic denial-of-service
vulnerabilities through guided micro-fuzzing. In: Proc. of the 27th Network and Distributed System Security Symp. San Diego: NDSS,
2020. 1–18. [doi: 10.14722/ndss.2020.24415]
[34] Wen C, Wang HJ, Li YK, Qin SC, Liu Y, Xu ZW, Chen HX, Xie XF, Pu GG, Liu T. MemLock: Memory usage guided fuzzing. In: Proc.
of the 42nd Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 765–777. [doi: 10.1145/3377811.3380396]
[35] Atlidakis V, Geambasu R, Godefroid P, Polishchuk M, Ray B. Pythia: Grammar-based fuzzing of REST APIs with coverage-guided
feedback and learning-based mutations. arXiv:2005.11498, 2020.
[36] Wei JY, Chen J, Feng Y, Ferles K, Dillig I. Singularity: Pattern fuzzing for worst case complexity. In: Proc. of the 26th ACM Joint
Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Lake Buena Vista: ACM,
2018. 213–223. [doi: 10.1145/3236024.3236039]
[37] She DD, Pei KX, Epstein D, Yang JF, Ray B, Jana S. Neuzz: Efficient fuzzing with neural program smoothing. In: Proc. of the 2019
IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2019. 803–817. [doi: 10.1109/SP.2019.00052]
[38] She DD, Krishna R, Yan L, Jana S, Ray B. MTFuzz: Fuzzing with a multi-task neural network. In: Proc. of the 28th ACM Joint Meeting
on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 737–749. [doi: 10.1145/
3368089.3409723]
[39] Godefroid P, Peleg H, Singh R. Learn&Fuzz: Machine learning for input fuzzing. In: Proc. of the 32nd IEEE/ACM Int’l Conf. on
Automated Software Engineering. Urbana-Champaign: IEEE, 2017. 50–59.
[40] Liu X, Li XT, Prajapati R, Wu DH. DeepFuzz: Automatic generation of syntax valid C programs for fuzz testing. In: Proc. of the 33rd
AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 1044–1051. [doi: 10.1609/aaai.v33i01.33011044]
[41] Zong PY, Lv T, Wang DW, Deng ZZ, Liang RG, Chen K. FuzzGuard: Filtering out unreachable inputs in directed grey-box fuzzing
through deep learning. In: Proc. of the 29th USENIX Conf. on Security Symp. USENIX Association, 2020. 127.
[42] Li YK, Xue YX, Chen HX, Wu XH, Zhang C, Xie XF, Wang HJ, Liu Y. Cerebro: Context-aware adaptive fuzzing for effective
vulnerability detection. In: Proc. of the 27th ACM Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations
of Software Engineering. Tallinn: ACM, 2019. 533–544. [doi: 10.1145/3338906.3338975]
[43] Guo R. MongoDB’s JavaScript Fuzzer: The fuzzer is for those edge cases that your testing didn’t catch. Queue, 2017, 15(1): 38–56. [doi:

