Page 303 - 《软件学报》2025年第7期
P. 303
3224 软件学报 2025 年第 36 卷第 7 期
classification models. In: Proc. of the 26th USENIX Security Symp. Vancouver: USENIX Association, 2017. 625–642.
[7] Zhang XH, Zhang Y, Zhong M, Ding DZ, Cao YZ, Zhang YK, Zhang M, Yang M. Enhancing state-of-the-art classifiers with API
semantics to detect evolved Android malware. In: Proc. of the 2020 ACM SIGSAC Conf. on Computer and Communications Security.
ACM, 2020. 757–770. [doi: 10.1145/3372297.3417291]
[8] Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K. DREBIN: Effective and explainable detection of Android malware in your
pocket. In: Proc. of the 21st Annual Network and Distributed System Security Symp. San Diego: The Internet Society, 2014. 1–15.
[9] Aafer Y, Du WL, Yin H. DroidAPIMiner: Mining API-level features for robust malware detection in Android. In: Proc. of the 9th Int’l
ICST Conf. on Security and Privacy in Communication Networks. Sydney: Springer, 2013. 86–103. [doi: 10.1007/978-3-319-04283-1_6]
[10] Feng RT, Chen S, Xie XF, Meng GZ, Lin SW, Liu Y. A performance-sensitive malware detection system using deep learning on mobile
devices. IEEE Trans. on Information Forensics and Security, 2021, 16: 1563–1578. [doi: 10.1109/TIFS.2020.3025436]
[11] Allen J, Landen M, Chaba S, Ji Y, Chung SPH, Lee W. Improving accuracy of Android malware detection with lightweight contextual
awareness. In: Proc. of the 34th Annual Computer Security Applications Conf. San Juan: ACM, 2018. 210–221. [doi: 10.1145/3274694.
3274744]
[12] Wu YM, Li XD, Zou DQ, Yang W, Zhang X, Jin H. MalScan: Fast market-wide mobile malware scanning by social-network centrality
analysis. In: Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering. San Diego: IEEE, 2019. 139–150. [doi: 10.
1109/ASE.2019.00023]
[13] Mariconti E, Onwuzurike L, Andriotis P, de Cristofaro E, Ross G, Stringhini G. Mamadroid: Detecting android malware by building
Markov chains of behavioral models. In: Proc. of the 24th Annual Network and Distributed System Security Symp. San Diego: The
Internet Society, 2017. 1–16.
[14] Lei T, Qin Z, Wang ZB, Li Q, Ye DP. EveDroid: Event-aware android malware detection against model degrading for IoT devices. IEEE
Internet of Things Journal, 2019, 6(4): 6668–6680. [doi: 10.1109/JIOT.2019.2909745]
[15] Lau JH, Baldwin T. An empirical evaluation of doc2vec with practical insights into document embedding generation. In: Proc. of the 1st
Workshop on Representation Learning for NLP. Berlin: Association for Computational Linguistics, 2016. 78–86. [doi: 10.18653/v1/W16-
1609]
[16] Au KWY, Zhou YF, Huang Z, Lie D. PScout: Analyzing the Android permission specification. In: Proc. of the 2012 ACM Conf. on
Computer and Communications Security. Raleigh North: ACM, 2012. 217–228. [doi: 10.1145/2382196.2382222]
[17] Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Proc. of
the 26th Int’l Conf. on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 2787–2795.
[18] Xu JY, Li YJ, Deng RH, Xu K. SDAC: A slow-aging solution for Android malware detection using semantic distance based API
clustering. IEEE Trans. on Dependable and Secure Computing, 2022, 19(2): 1149–1163. [doi: 10.1109/TDSC.2020.3005088]
[19] Arp D, Quiring E, Pendlebury F, Pendlebury F, Warnecke A, Pierazzi F, Wressnegger C, Cavallaro L, Rieck K. Dos and don’ts of
machine learning in computer security. In: Proc. of the 31st USENIX Security Symp. Boston: USENIX Association, 2022. 3971–3988.
[20] Narayanan A, Liu Y, Chen LH, Liu JL. Adaptive and scalable Android malware detection through online learning. In: Proc. of the 2016
Int’l Joint Conf. on Neural Networks. Vancouver: IEEE, 2016. 2484–2491. [doi: 10.1109/IJCNN.2016.7727508]
[21] Xu K, Li YJ, Deng R, Chen K, Xu JY. DroidEvolver: Self-evolving Android malware detection system. In: Proc. of the 2019 IEEE
European Symp. on Security and Privacy. Stockholm: IEEE, 2019. 47–62. [doi: 10.1109/EuroSP.2019.00014]
[22] Gu YH, Li LX. GraphEvolveDroid: Mitigate model degradation in the scenario of Android ecosystem evolution. In: Proc. of the 30th
ACM Int’l Conf. on Information & Knowledge Management. ACM, 2021. 3588–3591.
[23] Hei YM, Yang RY, Peng H, Wang LH, Xu XL, Liu JW, Liu H, Xu J, Sun LC. Hawk: Rapid Android malware detection through
heterogeneous graph attention networks. IEEE Trans. on Neural Networks and Learning Systems, 2024, 35(4): 4703–4717. [doi: 10.1109/
TNNLS.2021.3105617]
[24] Yuan C, Cai JX, Tian DH, Ma R, Jia XQ, Liu WM. Towards time evolved malware identification using two-head neural network. Journal
of Information Security and Applications, 2022, 65: 103098. [doi: 10.1016/j.jisa.2021.103098]
[25] Karbab EB, Debbabi M. PetaDroid: Adaptive android malware detection using deep learning. In: Proc. of the 18th Int’l Conf. on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2021. 319–340. [DOI: 10.1007/978-3-030-80825-9_16]
[26] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Tansformers for language understanding. In: Proc.
of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Minneapolis: Association for Computational Linguistics, 2019. 4171–4186. [doi: 10.18653/v1/n19-1423]
[27] Syakur MA, Khotimah BK, Rochman EMS, Satoto BD. Integration k-means clustering method and elbow method for identification of the
best customer profile cluster. IOP Conf. Series: Materials Science and Engineering, 2018, 336: 012017. [doi 10.1088/1757-899X/336/1/

