Page 228 - 《软件学报》2025年第7期
P. 228

邱少健 等: 基于函数间结构特征关联的软件漏洞检测方法                                                     3149


                  [6]  Iannone E, Guadagni R, Ferrucci F, De Lucia A, Palomba F. The secret life of software vulnerabilities: A large-scale empirical study.
                     IEEE Trans. on Software Engineering, 2023, 49(1): 44–63. [doi: 10.1109/TSE.2022.3140868]
                  [7]  Le  THM,  Chen  H,  Babar  MA.  Deep  learning  for  source  code  modeling  and  generation:  Models,  applications,  and  challenges.  ACM
                     Computing Surveys (CSUR), 2020, 53(3): 62. [doi: 10.1145/3383458]
                  [8]  Liu J, Su PR, Yang M, He L, Zhang Y, Zhu XY, Lin HM. Software and cyber security-A survey. Ruan Jian Xue Bao/Journal of Software,
                     2018, 29(1): 42–68 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5320.htm [doi: 10.13328/j.cnki.jos.005320]
                  [9]  Shao SH, Gao Q, Ma S, Duan FY, Ma X, Zhang SK, Hu JH. Progress in research on buffer overflow vulnerability analysis technologies.
                     Ruan Jian Xue Bao/Journal of Software, 2018, 29(5): 1179–1198 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/
                     5504.htm [doi: 10.13328/j.cnki.jos.005504]
                 [10]  Díaz  G,  Bermejo  JR.  Static  analysis  of  source  code  security:  Assessment  of  tools  against  SAMATE  tests.  Information  and  Software
                     Technology, 2013, 55(8): 1462–1476. [doi: 10.1016/j.infsof.2013.02.005]
                 [11]  Chakraborty S, Krishna R, Ding YRB, Ray B. Deep learning based vulnerability detection: Are we there yet? IEEE Trans. on Software
                     Engineering, 2022, 48(9): 3280–3296. [doi: 10.1109/TSE.2021.3087402]
                 [12]  Bresson X, Laurent T. Residual gated graph ConvNets. arXiv:1711.07553, 2018.
                 [13]  Johnson B, Song Y, Murphy-Hill E, Bowdidge R. Why don’t software developers use static analysis tools to find bugs? In: Proc. of the
                     35th Int’l Conf. on Software Engineering. San Francisco: IEEE, 2013. 672–681. [doi: 10.1109/ICSE.2013.6606613]
                 [14]  Qasem A, Shirani P, Debbabi M, Wang LY, Lebel B, Agba BL. Automatic vulnerability detection in embedded devices and firmware:
                     Survey and layered taxonomies. ACM Computing Surveys, 2022, 54(2): 25. [doi: 10.1145/3432893]
                 [15]  Tyagi Y, Shekhar S, P A, Bhardwaj S. SEEMA: An automation framework for vulnerability assessement and penetration testing. In: Proc.
                     of the 2nd Int’l Conf. on Vision Towards Emerging Trends in Communication and Networking Technologies. Vellore: IEEE, 2023. 1–5.
                     [doi: 10.1109/ViTECoN58111.2023.10157032]
                 [16]  Chen  K,  Lu  H,  Fang  BX,  Sun  YB,  Su  S,  Tian  ZH.  Survey  on  automated  penetration  testing  technology  research.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2024, 35(5): 2268–2288 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/7038.htm [doi: 10.
                     13328/j.cnki.jos.007038]
                 [17]  Louati A, Gasiba T. Source code vulnerability detection using deep learning algorithms for industrial applications. In: Proc. of the 2nd
                     Int’l Conf. on Ubiquitous Security. Zhangjiajie: Springer, 2022. 161–178. [doi: 10.1007/978-981-99-0272-9_11]
                 [18]  Li Z, Zou DQ, Xu SH, Ou XY, Jin H, Wang SJ, Deng ZJ, Zhong YY. VulDeePecker: A deep learning-based system for vulnerability
                     detection. In: Proc. of the 25th Annual Network and Distributed Systems Security (NDSS) Symp. 2018. [doi: 10.14722/ndss.2018.23158]
                 [19]  Lin GJ, Xiao W, Zhang J, Xiang Y. Deep learning-based vulnerable function detection: A benchmark. In: Proc. of the 21st Int’l Conf. on
                     Information and Communications Security. Beijing: Springer, 2020. 219–232. [doi: 10.1007/978-3-030-41579-2_13]
                 [20]  Li N, Zhang HY, Hu ZH, Kou G, Dai HD. Automated software vulnerability detection via pre-trained context encoder and self attention.
                     In: Proc. of the 12th EAI Int’l Conf. on Digital Forensics and Cyber Crime. Springer, 2022. 248–264. [doi: 10.1007/978-3-031-06365-
                     7_15]
                 [21]  Yamaguchi F, Golde N, Arp D, Rieck K. Modeling and discovering vulnerabilities with code property graphs. In: Proc. of the 2014 IEEE
                     Symp. on Security and Privacy. Berkeley: IEEE, 2014. 590–604. [doi: 10.1109/SP.2014.44]
                 [22]  Zhang JW, Liu ZX, Hu X, Xia X, Li SP. Vulnerability detection by learning from syntax-based execution paths of code. IEEE Trans. on
                     Software Engineering, 2023, 49(8): 4196–4212. [doi: 10.1109/TSE.2023.3286586]
                 [23]  Li  Y,  Wang  SH,  Nguyen  TN.  Vulnerability  detection  with  fine-grained  interpretations.  In:  Proc.  of  the  29th  ACM  Joint  Meeting  on
                     European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Athens: ACM, 2021. 292–303. [doi: 10.
                     1145/3468264.3468597]
                 [24]  Wen  XC,  Chen  YP,  Gao  CY,  Zhang  HY,  Zhang  JM,  Liao  Q.  Vulnerability  detection  with  graph  simplification  and  enhanced  graph
                     representation learning. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering. Melbourne: IEEE, 2023. 2275–2286. [doi:
                     10.1109/ICSE48619.2023.00191]
                 [25]  Steenhoek  B,  Gao  HY,  Le  W.  Dataflow  analysis-inspired  deep  learning  for  efficient  vulnerability  detection.  In:  Proc.  of  the  46th
                     IEEE/ACM Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 16. [doi: 10.1145/3597503.3623345]
                 [26]  Cheng JX, Chen YZ, Cao YZ, Wang HP. A vulnerability detection framework by focusing on critical execution paths. Information and
                     Software Technology, 2024, 174: 107517. [doi: 10.1016/j.infsof.2024.107517]
                 [27]  Kim D, Oh A. How to find your friendly neighborhood: Graph attention design with self-supervision. arXiv:2204.04879, 2022.
                 [28]  Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.
                 [29]  Joern. 2024. https://github.com/joernio/joern
   223   224   225   226   227   228   229   230   231   232   233