Page 440 - 《软件学报》2025年第5期
P. 440

2340                                                       软件学报  2025  年第  36  卷第  5  期


                     32(4): 1129–1150 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6168.htm [doi: 10.13328/j.cnki.jos.006168]
                 [23]  Chen LY, Chen SM. How does updatable learned index perform on non-volatile main memory? In: Proc. of the 37th IEEE Int’l Conf. on
                     Data Engineering Workshops. Chania: IEEE, 2021. 66–71. [doi: 10.1109/ICDEW53142.2021.00019]
                 [24]  Zhang Z, Chu ZL, Jin PQ, Luo YP, Xie XK, Wan SH, Luo Y, Wu XF, Zou P, Zheng CY, Wu GA, Rudoff A. PLIN: A persistent learned
                     index for non-volatile memory with high performance and instant recovery. Proc. of the VLDB Endowment, 2022, 16(2): 243–255. [doi:
                     10.14778/3565816.3565826]
                 [25]  Wang  ZH,  Lai  BL,  Zhao  ZY,  Lu  K,  Wan  JG.  APLI:  A  high-performance  learned  index  for  persistent  memory.  Journal  of  Chinese
                     Computer Systems, 2024, 45(9): 2110–2118 (in Chinese with English abstract). [doi: 10.20009/j.cnki.21-1106/TP.2023-0140]
                 [26]  Kipf  A,  Marcus  R,  Van  Renen  A,  Stoian  M,  Kemper  A,  Kraska  T,  Neumann  T.  SOSD:  A  benchmark  for  learned  indexes.
                     arXiv:1911.13014, 2019.
                 [27]  Xie  Q,  Pang  CY,  Zhou  XF,  Zhang  XL,  Deng  K.  Maximum  error-bounded  piecewise  linear  representation  for  online  stream
                     approximation. The VLDB Journal, 2014, 23(6): 915–937. [doi: 10.1007/s00778-014-0355-0]
                 [28]  Ding JL, Minhas UF, Yu J, Wang C, Do J, Li YN, Zhang HT, Chandramouli B, Gehrke J, Kossmann D, Lomet D, Kraska T. ALEX: An
                     updatable  adaptive  learned  index.  In:  Proc.  of  the  2020  ACM  SIGMOD  Int’l  Conf.  on  Management  of  Data.  Portland:  ACM,  2020.
                     969–984. [doi: 10.1145/3318464.3389711]
                 [29]  Ferragina P, Vinciguerra G. The PGM-index: A fully-dynamic compressed learned index with provable worst-case bounds. Proc. of the
                     VLDB Endowment, 2020, 13(8): 1162–1175. [doi: 10.14778/3389133.3389135]
                 [30]  Galakatos A, Markovitch M, Binnig C, Fonseca R, Kraska T. FITing-tree: A data-aware index structure. In: Proc. of the 2019 Int’l Conf.
                     on Management of Data. Amsterdam: ACM, 2019. 1189–1206. [doi: 10.1145/3299869.3319860]
                 [31]  Chen  JS,  Chen  K,  Shou  LD,  Jiang  DW,  Chen  G.  ALERT:  Workload-adaptive  learned  index  based  on  radix  tree.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2022, 33(12): 4688–4703 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6354.htm [doi:
                     10.13328/j.cnki.jos.006354]
                 [32]  Tang CZ, Wang YY, Dong ZY, Hu GS, Wang ZG, Wang MJ, Chen HB. XIndex: A scalable learned index for multicore data storage. In:
                     Proc. of the 25th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming. San Diego: ACM, 2020. 308–320. [doi: 10.
                     1145/3332466.3374547]
                 [33]  Li PF, Hua Y, Jia JN, Zuo PF. FINEdex: A fine-grained learned index scheme for scalable and concurrent memory systems. Proc. of the
                     VLDB Endowment, 2021, 15(2): 321–334. [doi: 10.14778/3489496.3489512]
                 [34]  Wu JC, Zhang Y, Chen SM, Wang J, Chen Y, Xing CX. Updatable learned index with precise positions. Proc. of the VLDB Endowment,
                     2021, 14(8): 1276–1288. [doi: 10.14778/3457390.3457393]
                 [35]  Li PF, Lu H, Zhu R, Ding BL, Yang L, Pan G. DILI: A distribution-driven learned index (Extended version). arXiv:2304.08817, 2023.
                 [36]  O’Neil P, Cheng E, Gawlick D, O’Neil E. The log-structured merge-tree (LSM-tree). Acta Informatica, 1996, 33(4): 351–385. [doi: 10.
                     1007/s002360050048]
                 [37]  Yang J, Kim J, Hoseinzadeh M, Izraelevitz J, Swanson S. An empirical guide to the behavior and use of scalable persistent memory. In:
                     Proc. of the 18th USENIX Conf. on File and Storage Technologies. Santa Clara: USENIX Association, 2020. 169–182.
                 [38]  Liu XY, Lin ZJ, Wang HQ. Novel online methods for time series segmentation. IEEE Trans. on Knowledge and Data Engineering, 2008,
                     20(12): 1616–1626. [doi: 10.1109/TKDE.2008.29]
                                    ®
                 [39]  Intel  Corporation.  Intel   64  and  IA-32  architectures  software  developer’s  manual.  https://www.intel.cn/content/www/cn/zh/developer/
                     articles/technical/intel-sdm.html
                 [40]  Intel Corporation. Deprecating the PCOMMIT Instruction. https://www.intel.cn/content/www/cn/zh/developer/articles/technical/deprecate-
                     pcommit-instruction.html
                 [41]  Wongkham C, Lu BT, Liu C, Zhong ZC, Lo E, Wang TZ. Are updatable learned indexes ready? Proc. of the VLDB Endowment, 2022,
                     15(11): 3004–3017. [doi: 10.14778/3551793.3551848]

                 附中文参考文献:
                 [22]  张洲, 金培权, 谢希科. 学习索引: 现状与研究展望. 软件学报, 2021, 32(4): 1129–1150. http://www.jos.org.cn/1000-9825/6168.htm
                     [doi: 10.13328/j.cnki.jos.006168]
                 [25]  王中华, 赖必梁, 赵泽阳, 鲁凯, 万继光. APLI: 一种基于持久化内存的高性能学习索引. 小型微型计算机系统, 2024, 45(9):
                     2110–2118. [doi: 10.20009/j.cnki.21-1106/TP.2023-0140]
   435   436   437   438   439   440   441   442   443   444   445