Page 419 - 《软件学报》2025年第5期
P. 419

王笑 等: 面向属性网络社团检测的度修正广义随机块模型                                                     2319


                     Cybernetics, 2019, 49(2): 626–637. [doi: 10.1109/TCYB.2017.2783325]
                 [17]  Wu XX, Jiao PF, Wang YP, Li TP, Wang WJ, Wang B. Dynamic stochastic block model with scale-free characteristic for temporal
                     complex  networks.  In:  Proc.  of  the  24th  Int’l  Conf.  on  Database  Systems  for  Advanced  Applications.  Chiang  Mai:  Springer,  2019.
                     502–518. [doi: 10.1007/978-3-030-18579-4_30]
                 [18]  Xu ZJ, Liu XY, Cui XJ, Li XM, Yang B. Robust stochastic block model. Neurocomputing, 2020, 379: 398–412. [doi: 10.1016/j.neucom.
                     2019.10.069]
                 [19]  Liu XY, Yang B, Song WZ, Musial K, Zuo WL, Chen HX, Yin HZ. A block-based generative model for attributed network embedding.
                     World Wide Web, 2021, 24(5): 1439–1464. [doi: 10.1007/s11280-021-00918-y]
                 [20]  Chang  ZH,  Jia  CY,  Yin  XJ,  Zheng  YM.  A  generative  model  for  exploring  structure  regularities  in  attributed  networks.  Information
                     Sciences, 2019, 505: 252–264. [doi: 10.1016/j.ins.2019.07.084]
                 [21]  Zheng YM, Jia CY, Chang ZH, Li XY. A degree corrected stochastic block model for attributed networks. Journal of Computer Research
                     and Development, 2020, 57(8): 1650–1662 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2020.20200158]
                 [22]  Liu W, Chang ZH, Jia CY, Zheng YM. A generative node-attribute network model for detecting generalized structure and semantics.
                     Physica A: Statistical Mechanics and its Applications, 2022, 588: 126557. [doi: 10.1016/j.physa.2021.126557]
                 [23]  Newman  MEJ,  Leicht  EA.  Mixture  models  and  exploratory  analysis  in  networks.  Proc.  of  the  National  Academy  of  Sciences  of  the
                     United States of America, 2007, 104(23): 9564–9569. [doi: 10.1073/pnas.0610537104]
                 [24]  Zhu JJ, Liu YG, Wu H, Chen Z, Zhang Y, Yang SM, Yang CH, Yang W, Wu XD. A no self-edge stochastic block model and a heuristic
                     algorithm for balanced anti-community detection in networks. Information Sciences, 2020, 518: 95–112. [doi: 10.1016/j.ins.2020.01.005]
                 [25]  Wu XX, Wang CD, Jiao PF. Hybrid-order stochastic block model. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI,
                     2021. 4470–4477. [doi: 10.1609/aaai.v35i5.16574]
                 [26]  Abossedgh S, Saghaei A, Amiri A. Monitoring a labeled degree-corrected stochastic block model. Quality and Reliability Engineering
                     International, 2023, 39(1): 99–112. [doi: 10.1002/qre.3221]
                 [27]  Yang TB, Jin R, Chi Y, Zhu SH. Combining link and content for community detection: A discriminative approach. In: Proc. of the 15th
                     ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Paris: ACM, 2009. 927–936. [doi: 10.1145/1557019.1557120]
                 [28]  Chai BF, Yu J, Jia CY, Yang TB, Jiang YW. Combining a popularity-productivity stochastic block model with a discriminative-content
                     model for general structure detection. Physical Review E, 2013, 88(1): 012807. [doi: 10.1103/PhysRevE.88.012807]
                 [29]  Yang TB, Chi Y, Zhu SH, Gong YH, Jin R. Directed network community detection: A popularity and productivity link model. In: Proc.
                     of the 10th SIAM Int’l Conf. on Data Mining. Columbus: Society for Industrial and Applied Mathematics, 2010. 742–753. [doi: 10.1137/
                     1.9781611972801.6]
                 [30]  Chen HR, Yu ZJ, Yang QL, Shao JM. Attributed graph clustering with subspace stochastic block model. Information Sciences, 2020,
                     535: 130–141. [doi: 10.1016/j.ins.2020.05.044]
                 [31]  Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical
                     Society: Series B (Methodological), 1977, 39(1): 1–22. [doi: 10.1111/j.2517-6161.1977.tb01600.x]
                 [32]  Xuan GR, Shi YQ, Chai PQ, Sutthiwan P. An enhanced EM algorithm using maximum entropy distribution as initial condition. In: Proc.
                     of the 21st Int’l Conf. on Pattern Recognition (ICPR 2012). Tsukuba: IEEE, 2012: 849–852.
                 [33]  Sen P, Namata G, Bilgic M, Getoor L, Gallagher B, Eliassi-Rad T. Collective classification in network data. AI Magazine, 2008, 29(3):
                     93–106. [doi: 10.1609/aimag.v29i3.2157]
                 [34]  Rostami M, Oussalah M. A novel attributed community detection by integration of feature weighting and node centrality. Online Social
                     Networks and Media, 2022, 30: 100219. [doi: 10.1016/j.osnem.2022.100219]
                 [35]  Giles  CL,  Bollacker  KD,  Lawrence  S.  Citeseer:  An  automatic  citation  indexing  system.  In:  Proc.  of  the  3rd  ACM  Conf.  on  Digital
                     Libraries. Pittsburgh: ACM, 1998. 89–98. [doi: 10.1145/276675.276685]
                 [36]  Danon L, Díaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. Journal of Statistical Mechanics: Theory and
                     Experiment, 2005, 2005(9): P09008. [doi: 10.1088/1742-5468/2005/09/P09008]
                 [37]  Shang RH, Wang S, Zhang WT, Feng J, Jiao LC, Stolkin R. Evolutionary multi-objective overlapping community detection based on
                     fusion of internal and external connectivity and correction of node intimacy. Applied Soft Computing, 2024, 154: 111414. [doi: 10.1016/j.
                     asoc.2024.111414]
                 [38]  Ma HP, Liu ZJ, Zhang XY, Zhang L, Jiang H. Balancing topology structure and node attribute in evolutionary multi-objective community
                     detection for attributed networks. Knowledge-based Systems, 2021, 227: 107169. [doi: 10.1016/j.knosys.2021.107169]
                 [39]  Zhou  Y,  Cheng  H,  Yu  JX.  Graph  clustering  based  on  structural/attribute  similarities.  Proc.  of  the  VLDB  Endowment,  2009,  2(1):
                     718–729. [doi: 10.14778/1687627.1687709]
   414   415   416   417   418   419   420   421   422   423   424