Page 287 - 《软件学报》2025年第5期
P. 287
琚江舟 等: 多粒度单元格对比的文本和表格数值问答模型 2187
[30] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
[31] Chen XY, Liang C, Yu AW, Zhou D, Song D, Le QV. NEURAL symbolic reader: Scalable integration of distributed and symbolic
representations for reading comprehension. In: Proc. of the 8th Int’l Conf. on Learning Representations. Addis Ababa, 2020.
[32] Zhu FB, Lei WQ, Huang YC, Wang C, Zhang S, Lv JC, Feng FL, Chua TS. TAT-QA: A question answering benchmark on a hybrid of
tabular and textual content in finance. In: Proc. of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
Int’l Joint Conf. on Natural Language Processing (Vol. 1: Long Papers). Association for Computational Linguistics, 2021. 3277–3287.
[doi: 10.18653/v1/2021.acl-long.254]
[33] Ran Q, Lin YK, Li P, Zhou J, Liu ZY. NumNet: Machine reading comprehension with numerical reasoning. In: Proc. of the 2019 Conf.
on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong: Association for Computational Linguistics, 2019. 2474–2484. [doi: 10.18653/v1/D19-1251]
[34] Araci D. FinBERT: Financial sentiment analysis with pre-trained language models. arXiv:1908.10063, 2019.
[35] Wei J, Wang XZ, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le Q, Zhou D. Chain-of-thought prompting elicits reasoning in large
language models. arXiv:2201.11903, 2023.
[36] Touvron H, Martin L, Stone K, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288, 2023.
[37] Introducing ChatGPT. 2022. https://openai.com/blog/chatgpt
[38] Liu YH, Ott M, Goyal N, Du JF, Joshi M, Chen DQ, Levy O, Lewis M, Zettlemoyer L, Stoyanov V. RoBERTa: A robustly optimized
BERT pretraining approach. arXiv:1907.11692, 2019.
[39] Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv:1711.05101, 2019.
[40] Srivastava P, Malik M, Gupta V, Ganu T, Roth D. Evaluating LLMs’ mathematical reasoning in financial document question answering.
arXiv:2402.11194, 2024.
[41] Wang F, Liu HP. Understanding the behaviour of contrastive loss. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR). Nashville: IEEE, 2021. 2495–2504. [doi: 10.1109/CVPR46437.2021.00252]
附中文参考文献:
[1] 游斓, 周雅倩, 黄萱菁, 吴立德. 基于最大熵模型的 QA 系统置信度评分算法. 软件学报, 2005, 16(8): 1407–1414. http://www.jos.org.
cn/1000-9825/16/1407.htm [doi: 10.1360/jos161407]
[2] 乔少杰, 杨国平, 于泳, 韩楠, 覃晓, 屈露露, 冉黎琼, 李贺. QA-KGNet: 一种语言模型驱动的知识图谱问答模型. 软件学报, 2023,
34(10): 4584–4600. http://www.jos.org.cn/1000-9825/6882.htm [doi: 10.13328/j.cnki.jos.006882]
[25] 陈跃鹤, 贾永辉, 谈川源, 陈文亮, 张民. 基于知识图谱全局和局部特征的复杂问答方法. 软件学报, 2023, 34(12): 5614–5628. http://
www.jos.org.cn/1000-9825/6799.htm [doi: 10.13328/j.cnki.jos.006799]
琚江舟(1991-), 男, 博士生, 主要研究领域为问 陈宇飞(2000-), 男, 硕士生, 主要研究领域为问
答系统. 答系统.
毛云麟(1999-), 男, 硕士生, 主要研究领域为问 戴新宇(1979-), 男, 博士, 教授, 博士生导师,
答系统. CCF 专业会员, 主要研究领域为自然语言处理,
人机对话交互, 人工智能应用.
吴震(1993-), 男, 博士, 助理教授, 主要研究领 陈家骏(1963-), 男, 博士, 教授, 博士生导师,
域为情感分析, 观点挖掘, 情感生成, 迁移学习. CCF 专业会员, 主要研究领域为自然语言处理,
机器翻译, 程序设计语言.