Page 141 - 《软件学报》2025年第5期
P. 141
孙百才 等: 代理辅助多任务进化优化引导的 MPI 程序路径覆盖测试用例生成 2041
on Power Systems. Kharagpur: IEEE, 2009. 1–6. [doi: 10.1109/ICPWS.2009.5442650]
[2] Alvioli M, Baum RL. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface.
Environmental Modelling & Software, 2016, 81: 122–135. [doi: 10.1016/j.envsoft.2016.04.002]
[3] Yan J, Zhang J. An efficient method to generate feasible paths for basis path testing. Information Processing Letters, 2008, 107(3–4):
87–92. [doi: 10.1016/j.ipl.2008.01.007]
[4] Sun BC, Gong DW, Tian T, Yao XJ. Integrating an ensemble surrogate model’s estimation into test data generation. IEEE Trans. on
Software Engineering, 2022, 48(4): 1336–1350. [doi: 10.1109/TSE.2020.3019406]
[5] Qiao KJ, Yu KJ, Qu BY, Liang J, Song H, Yue CT. An evolutionary multitasking optimization framework for constrained multiobjective
optimization problems. IEEE Trans. on Evolutionary Computation, 2022, 26(2): 263–277. [doi: 10.1109/TEVC.2022.3145582]
[6] Qiao KJ, Liang J, Yu KJ, Wang MH, Qu BY, Yue CT, Guo YN. A self-adaptive evolutionary multi-task based constrained multi-
objective evolutionary algorithm. IEEE Trans. on Emerging Topics in Computational Intelligence, 2023, 7(4): 1098–1112. [doi: 10.1109/
TETCI.2023.3236633]
[7] Wang C, Wu K, Liu J. Evolutionary multitasking AUC optimization [Research Frontier]. IEEE Computational Intelligence Magazine,
2022, 17(2): 67–82. [doi: 10.1109/MCI.2022.3155325]
[8] Wang Y, Lin JQ, Liu J, Sun GY, Pang T. Surrogate-assisted differential evolution with region division for expensive optimization
problems with discontinuous responses. IEEE Trans. on Evolutionary Computation, 2022, 26(4): 780–792. [doi: 10.1109/TEVC.2021.
3117990]
[9] Si LC, Zhang XY, Tian Y, Yang SS, Zhang LM, Jin YC. Linear subspace surrogate modeling for large-scale expensive single/multi-
objective optimization. IEEE Trans. on Evolutionary Computation, 2023. [doi: 10.1109/TEVC.2023.3319640]
[10] Jin YC, Wang HD, Chugh T, Guo D, Miettinen K. Data-driven evolutionary optimization: An overview and case studies. IEEE Trans. on
Evolutionary Computation, 2019, 23(3): 442–458. [doi: 10.1109/TEVC.2018.2869001]
[11] Ma EZ, Fu XF, Wang X. Scalable path search for automated test case generation. Electronics, 2022, 11(5): 727. [doi: 10.3390/
electronics11050727]
[12] Khari M, Sinha A, Verdú E, Crespo RG. Performance analysis of six meta-heuristic algorithms over automated test suite generation for
path coverage-based optimization. Soft Computing, 2020, 24(12): 9143–9160. [doi: 10.1007/s00500-019-04444-y]
[13] Cai GC, Su QH, Hu ZB. Automated test case generation for path coverage by using grey prediction evolution algorithm with improved
scatter search strategy. Engineering Applications of Artificial Intelligence, 2021, 106: 104454. [doi: 10.1016/j.engappai.2021.104454]
[14] Semujju SD, Huang H, Liu FQ, Xiang Y, Hao ZF. Search-based software test data generation for path coverage based on a feedback-
directed mechanism. Complex System Modeling and Simulation, 2023, 3(1): 12–31. [doi: 10.23919/CSMS.2022.0027]
[15] Tian T, Gong DW, Kuo FC, Liu H. Genetic algorithm based test data generation for MPI parallel programs with blocking communication.
Journal of Systems and Software, 2019, 155: 130–144. [doi: 10.1016/j.jss.2019.04.049]
[16] Gong DW, Pan F, Tian T, Yang S, Meng FL. A feedback-directed method of evolutionary test data generation for parallel programs.
Information and Software Technology, 2020, 124: 106318. [doi: 10.1016/j.infsof.2020.106318]
[17] Sun BC, Wang JX, Gong DW, Tian T. Scheduling sequence selection for generating test data to cover paths of MPI programs.
Information and Software Technology, 2019, 114: 190–203. [doi: 10.1016/j.infsof.2019.07.002]
[18] Du XZ, He HM, Liu JL. Test data generation of deterministic MPI parallel program based on path coverage. In: Proc. of the 2021 Int’l
Conf. on Frontiers of Electronics, Information and Computation Technologies. Changsha: ACM, 2021. 91. [doi: 10.1145/3474198.3478213]
[19] Sun BC, Gong DW, Yao XJ. Integrating DSGEO into test case generation for path coverage of MPI programs. Information and Software
Technology, 2023, 153: 107068. [doi: 10.1016/j.infsof.2022.107068]
[20] Jin YC. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation,
2011, 1(2): 61–70. [doi: 10.1016/j.swevo.2011.05.001]
[21] Luo WJ, Yi RK, Yang B, Xu PL. Surrogate-assisted evolutionary framework for data-driven dynamic optimization. IEEE Trans. on
Emerging Topics in Computational Intelligence, 2019, 3(2): 137–150. [doi: 10.1109/TETCI.2018.2872029]
[22] Li GH, Zhang QF, Lin QZ, Gao WF. A three-level radial basis function method for expensive optimization. IEEE Trans. on Cybernetics,
2022, 52(7): 5720–5731. [doi: 10.1109/TCYB.2021.3061420]
[23] Zhan DW, Xing HL. A fast kriging-assisted evolutionary algorithm based on incremental learning. IEEE Trans. on Evolutionary
Computation, 2021, 25(5): 941–955. [doi: 10.1109/TEVC.2021.3067015]
[24] Jiao RW, Xue B, Zhang MJ. Investigating the correlation amongst the objective and constraints in Gaussian process-assisted highly
constrained expensive optimization. IEEE Trans. on Evolutionary Computation, 2022, 26(5): 872–885. [doi: 10.1109/TEVC.2021.
3120980]