Page 80 - 《软件学报》2025年第4期
P. 80

1486                                                       软件学报  2025  年第  36  卷第  4  期


                 [44]  Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proc. of the
                     31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
                 [45]  Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
                     of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1
                     (Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019. 4171–4186. [doi: 10.18653/v1/N19-1423]
                 [46]  Husain H, Wu HH, Gazit T, Allamanis M, Brockschmidt M. CodeSearchNet challenge: Evaluating the state of semantic code search.
                     arXiv:1909.09436, 2020.
                 [47]  Svajlenko J, Islam JF, Keivanloo I, Roy CK, Mia MM. Towards a big data curated benchmark of inter-project code clones. In: Proc. of
                     the 2014 IEEE Int’l Conf. on Software Maintenance and Evolution. Victoria: IEEE, 2014. 476–480. [doi: 10.1109/ICSME.2014.77]
                 [48]  Zhou YQ, Liu SQ, Siow JK, Du XN, Liu Y. Devign: Effective vulnerability identification by learning comprehensive program semantics
                     via graph neural networks. In: Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc.,
                     2019. 10197–10207.
                 [49]  Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735]
                 [50]  Alon U, Brody S, Levy O, Yahav E. Code2Seq: Generating sequences from structured representations of code. In: Proc. of the 7th Int’l
                     Conf. on Learning Representations. New Orleans: OpenReview.net, 2019.
                 [51]  Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2016.
                 [52]  Svyatkovskiy A, Zhao Y, Fu SY, Sundaresan N. Pythia: AI-assisted code completion system. In: Proc. of the 25th ACM SIGKDD Int’l
                     Conf. on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 2727–2735. [doi: 10.1145/3292500.3330699]
                 [53]  Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI Blog, 2019,
                     1(8): 9.
                 [54]  Tran  B,  Li  J,  Madry  A.  Spectral  signatures  in  backdoor  attacks.  In:  Proc.  of  the  32nd  Int’l  Conf.  on  Neural  Information  Processing
                     Systems. Montréal: Curran Associates Inc., 2018. 8011–8021.
                 [55]  Chen B, Carvalho W, Baracaldo N, Ludwig H, Edwards B, Lee T, Molloy IM, Srivastava B. Detecting backdoor attacks on deep neural
                     networks by activation clustering. In: Proc. of the 2019 Workshop on Artificial Intelligence Safety Co-located with the 33rd AAAI Conf.
                     on Artificial Intelligence. Honolulu: CEUR-WS.org, 2019. 2301.
                 [56]  Cho K, van Merriënboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: Encoder-decoder approaches. In:
                     Proc.  of  the  8th  Workshop  on  Syntax,  Semantics  and  Structure  in  Statistical  Translation.  Doha:  Association  for  Computational
                     Linguistics, 2014. 103–111. [doi: 10.3115/v1/W14-4012]
                 [57]  Gu TY, Dolan-Gavitt B, Garg S. BadNets: Identifying vulnerabilities in the machine learning model supply chain. arXiv:1708.06733,
                     2019.
                 [58]  Kim Y. Convolutional neural networks for sentence classification. In: Proc. of the 2014 Conf. on Empirical Methods in Natural Language
                     Processing. Doha: Association for Computational Linguistics, 2014. 1746–1751. [doi: 10.3115/v1/D14-1181]
                 [59]  Wang Y, Le H, Gotmare AD, Bui NDQ, Li JN, Hoi SCH. CodeT5+: Open code large language models for code understanding and
                     generation. arXiv:2305.07922, 2023.
                 [60]  Anderson HS, Roth P. EMBER: An open dataset for training static PE malware machine learning models. arXiv:1804.04637, 2018.
                 [61]  Smutz C, Stavrou A. Malicious PDF detection using metadata and structural features. In: Proc. of the 28th Annual Computer Security
                     Applications Conf. Orlando: ACM, 2012. 239–248. [doi: 10.1145/2420950.2420987]
                 [62]  Arp  D,  Spreitzenbarth  M,  Hubner  M,  Gascon  H,  Rieck  K.  Drebin:  Effective  and  explainable  detection  of  Android  malware  in  your
                     pocket. In: Proc. of the 21st Annual Network and Distributed System Security Symp. San Diego: The Internet Society, 2014.
                 [63]  Wang Y, Wang WS, Joty S, Hoi SCH. CodeT5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and
                     generation.  In:  Proc.  of  the  2021  Conf.  on  Empirical  Methods  in  Natural  Language  Processing.  Punta  Cana:  Association  for
                     Computational Linguistics, 2021. 8696–8708. [doi: 10.18653/v1/2021.emnlp-main.685]
                 [64]  Junod P, Rinaldini J, Wehrli J, Michielin J. Obfuscator-LLVM—Software protection for the masses. In: Proc. of the 1st IEEE/ACM Int’l
                     Workshop on Software Protection. Florence: IEEE, 2015. 3–9. [doi: 10.1109/SPRO.2015.10]
                 [65]  Chen  CS,  Dai  JZ.  Mitigating  backdoor  attacks  in  LSTM-based  text  classification  systems  by  backdoor  keyword  identification.
                     Neurocomputing, 2021, 452: 253–262. [doi: 10.1016/j.neucom.2021.04.105]
                 [66]  Guo DY, Ren S, Lu S, Feng ZY, Tang DY, Liu SJ, Zhou L, Duan N, Svyatkovskiy A, Fu SY, Tufano M, Deng SK, Clement C, Drain D,
                     Sundaresan N, Yin J, Jiang DX, Zhou M. GraphCodeBERT: Pre-training code representations with data flow. In: Proc. of the 9th Int’l
                     Conf. on Learning Representations. OpenReview.net, 2021.
                 [67]  Sundararajan  M,  Taly  A,  Yan  QQ.  Axiomatic  attribution  for  deep  networks.  In:  Proc.  of  the  34th  Int’l  Conf.  on  Machine  Learning.
                     Sydney: JMLR.org, 2017. 3319–3328.
   75   76   77   78   79   80   81   82   83   84   85