Page 403 - 《软件学报》2025年第4期
P. 403
代强强 等: 面向二部图的极大缺陷二团高效枚举算法 1809
[3] Boginski V, Butenko S, Pardalos PM. Mining market data: A network approach. Computers & Operations Research, 2006, 33(11):
3171–3184. [doi: 10.1016/j.cor.2005.01.027]
[4] Wang J, De Vries AP, Reinders MJT. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In:
Proc. of the 29th Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Seattle: ACM, 2006. 501–508.
[doi: 10.1145/1148170.1148257]
[5] Ley M. The DBLP computer science bibliography: Evolution, research issues, perspectives. In: Proc. of the 9th Int’l Symp. on String
Processing and Information Retrieval. Lisbon: Springer, 2002. 1–10. [doi: 10.1007/3-540-45735-6_1]
[6] Beutel A, Xu WH, Guruswami V, Palow C, Faloutsos C. CopyCatch: Stopping group attacks by spotting lockstep behavior in social
networks. In: Proc. of the 22nd Int’l Conf. on World Wide Web. Rio de Janeiro: ACM, 2013. 119–130. [doi: 10.1145/2488388.2488400]
[7] Li HQ, Li JY, Wong L. Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale. Bioinformatics,
2006, 22(8): 989–996. [doi: 10.1093/bioinformatics/btl020]
[8] Lehmann S, Schwartz M, Hansen LK. Biclique communities. Physical Review E, 2008, 78(1): 016108. [doi: 10.1103/PhysRevE.78.
016108]
[9] Lyu BQ, Qin L, Lin XM, Zhang Y, Qian ZP, Zhou JR. Maximum biclique search at billion scale. Proc. of the VLDB Endowment, 2020,
13(9): 1359–1372. [doi: 10.14778/3397230.3397234]
[10] Zhao YW. Community search algorithms of dense subgraphs in bipartite graph [MS. Thesis]. Shanghai: East China Normal University,
2023 (in Chinese with English abstract). [doi: 10.27149/d.cnki.ghdsu.2023.002346]
[11] Zhao XW, Xue JF. Community discovery algorithm for attributed networks based on bipartite graph representation. Computer Science,
2023, 50(11): 107–113 (in Chinese with English abstract). [doi: 10.11896/jsjkx.221000226]
[12] Yu KQ, Long C. Maximum k-Biplex search on bipartite graphs: A symmetric-BK branching approach. Proc. of the ACM on Management
of Data, 2023, 1(1): 49. [doi: 10.1145/3588729]
[13] Voggenreiter O, Bleuler S, Gruissem W. Exact biclustering algorithm for the analysis of large gene expression data sets. BMC
Bioinformatics, 2012, 13(S18): A10. [doi: 10.1186/1471-2105-13-S18-A10]
[14] Liu GM, Sim K, Li JY. Efficient mining of large maximal bicliques. In: Proc. of the 8th Int’l Conf. on Data Warehousing and Knowledge
Discovery. Krakow: Springer, 2006. 437–448. [doi: 10.1007/11823728_42]
[15] Li JY, Liu GM, Li HQ, Wong L. Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one
correspondence and mining algorithms. IEEE Trans. on Knowledge and Data Engineering, 2007, 19(12): 1625–1637. [doi: 10.1109/
TKDE.2007.190660]
[16] Dallas: Springer, 2016. 218–233. [doi: 10.1007/978-3-319-32049-6_14]
Zhang Y, Phillips CA, Rogers GL, Baker EJ, Chesler EJ, Langston MA. On finding bicliques in bipartite graphs: A novel algorithm and
its application to the integration of diverse biological data types. BMC Bioinformatics, 2014, 15(1): 110. [doi: 10.1186/1471-2105-15-
110]
[17] Das A, Tirthapura S. Shared-memory parallel maximal biclique enumeration. In: Proc. of the 26th IEEE Int’l Conf. on High Performance
Computing, Data, and Analytics (HiPC). Hyderabad: IEEE, 2019. 34–43. [doi: 10.1109/HiPC.2019.00016]
[18] Abidi A, Zhou R, Chen L, Liu CF. Pivot-based maximal biclique enumeration. In: Proc. of the 29th Int’l Conf. on Int’l Joint Conf. on
Artificial Intelligence. Yokohama: ACM, 2020. 3558–3564.
[19] Chen L, Liu CF, Zhou R, Xu JJ, Li JX. Efficient maximal biclique enumeration for large sparse bipartite graphs. Proc. of the VLDB
Endowment, 2022, 15(8): 1559–1571. [doi: 10.14778/3529337.3529341]
[20] Dai QQ, Li RH, Ye XW, Liao MH, Zhang WP, Wang GR. Hereditary cohesive subgraphs enumeration on bipartite graphs: The power of
pivot-based approaches. Proc. of the ACM on Management of Data, 2023, 1(2): 138. [doi: 10.1145/3589283]
[21] Cerinšek M, Batagelj V. Generalized two-mode cores. Social Networks, 2015, 42: 80–87. [doi: 10.1016/j.socnet.2015.04.001]
[22] Zou ZN. Bitruss decomposition of bipartite graphs. In: Proc. of the 21st Int’l Conf. on Database Systems for Advanced Applications.
[23] Sim K, Li JY, Gopalkrishnan V, Liu GM. Mining maximal quasi-bicliques: Novel algorithm and applications in the stock market and
protein networks. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2009, 2(4): 255–273. [doi: 10.1002/sam.10051]
[24] Yu HY, Paccanaro A, Trifonov V, Gerstein M. Predicting interactions in protein networks by completing defective cliques.
Bioinformatics, 2006, 22(7): 823–829. [doi: 10.1093/bioinformatics/btl014]
[25] Yannakakis M. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 1981, 10(2): 310–327. [doi: 10.1137/0210022]
[26] Liu BG, Yuan L, Lin XM, Qin L, Zhang WJ, Zhou JR. Efficient (α, β)-core computation in bipartite graphs. The VLDB Journal, 2020,
29(5): 1075–1099. [doi: 10.1007/s00778-020-00606-9]
[27] Zhang YH, Hua ZY, Yuan L, Zhang F, Wang K, Chen Z. Distance-generalized (α, β)-core decomposition on bipartite graphs. Computer