Page 305 - 《软件学报》2025年第4期
P. 305
樊铭瑞 等: 基于深度学习的多视图立体视觉综述 1711
view stereo. In: Proc. of the 2021 IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 14104–14113. [doi: 10.1109/
ICCV48922.2021.01386]
[18] Cheng K, Long XX, Yang KZ, Yao Y, Yin W, Ma YX, Wang WP, Chen XJ. GaussianPro: 3D Gaussian splatting with progressive
propagation. arXiv:2402.14650, 2024.
[19] Choy CB, Xu DF, Gwak J, Chen K, Savarese S. 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction. In:
Proc. of the 14th European Conf. on Computer Vision. Amsterdam: Springer, 2016. 628–644. [doi: 10.1007/978-3-319-46484-8_38]
[20] Kar A, Häne C, Malik J. Learning a multi-view stereo machine. In: Proc. of the 31st Int’l Conf. on Neural Information Processing
Systems. Long Beach: Curran Associates Inc., 2017. 364–375.
[21] Paschalidou D, Ulusoy AO, Schmitt C, van Gool L, Geiger A. RayNet: Learning volumetric 3D reconstruction with ray potentials. In:
Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3897–3906. [doi: 10.1109/
CVPR.2018.00410]
[22] Ji MQ, Zhang JZ, Dai QH, Fang L. SurfaceNet+: An end-to-end 3D neural network for very sparse multi-view stereopsis. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2021, 43(11): 4078–4093. [doi: 10.1109/TPAMI.2020.2996798]
[23] Jensen R, Dahl A, Vogiatzis G, Tola E, Aanæs H. Large scale multi-view stereopsis evaluation. In: Proc. of the 2014 IEEE Conf. on
Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 406–413. [doi: 10.1109/CVPR.2014.59]
[24] Xue YZ, Chen JS, Wan WT, Huang YQ, Yu C, Li TP, Bao JY. MVSCRF: Learning multi-view stereo with conditional random fields. In:
Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 4311–4320. [doi: 10.1109/ICCV.2019.00441]
[25] Yang JY, Mao W, Alvarez JM, Liu MM. Cost volume pyramid based depth inference for multi-view stereo. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2022, 44(9): 4748–4760. [doi: 10.1109/TPAMI.2021.3082562]
[26] Wei ZH, Zhu QT, Min C, Chen YS, Wang GP. AA-RMVSNet: Adaptive aggregation recurrent multi-view stereo network. In: Proc. of
the 2021 IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 6167–6176. [doi: 10.1109/ICCV48922.2021.00613]
[27] Cai YC, Li L, Wang D, Liu XP. MFNet: Multi-level fusion aware feature pyramid based multi-view stereo network for 3D reconstruction.
Applied Intelligence, 2023, 53(4): 4289–4301. [doi: 10.1007/s10489-022-03754-3]
[28] Zhang T. SuperMVS: Non-uniform cost volume for high-resolution multi-view stereo. arXiv:2203.14331, 2022.
[29] Yan JF, Wei ZZ, Yi HW, Ding MY, Zhang RZ, Chen YS, Wang GP, Tai YW. Dense hybrid recurrent multi-view stereo net with dynamic
consistency checking. In: Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 674–689. [doi: 10.1007/978-3-
030-58548-8_39]
[30] Cheng W, Bai ZY, Li JJ, Liu HJ, Yang LF. ADIM-MVSNet: Adaptive depth interval multi-view stereo network for 3D reconstruction. In:
Proc. of the 5th Int’l Conf. on Image and Graphics Processing. Beijing: ACM, 2022. 281–287. [doi: 10.1145/3512388.3512429]
[31] Zhang XD, Yang FZ, Chang M, Qin XF. MG-MVSNet: Multiple granularities feature fusion network for multi-view stereo.
Neurocomputing, 2023, 528: 35–47. [doi: 10.1016/j.neucom.2023.01.062]
[32] Yu AZ, Guo WY, Liu B, Chen X, Wang X, Cao XF, Jiang BC. Attention aware cost volume pyramid based multi-view stereo network for
3D reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 448–460. [doi: 10.1016/j.isprsjprs.2021.03.010]
[33] Li Y, Li WY, Zhao ZJ, Fan JH. DRI-MVSNet: A depth residual inference network for multi-view stereo images. PLoS One, 2022, 17(3):
e0264721. [doi: 10.1371/journal.pone.0264721]
[34] Weilharter R, Fraundorfer F. ATLAS-MVSNet: Attention layers for feature extraction and cost volume regularization in multi-view
stereo. In: Proc. of the 26th Int’l Conf. on Pattern Recognition. Montreal: IEEE, 2022. 3557–3563. [doi: 10.1109/ICPR56361.2022.
9956633]
[35] Ding YK, Yuan WT, Zhu QT, Zhang HT, Liu XY, Wang YJ, Liu X. TransMVSNet: Global context-aware multi-view stereo network
with transformers. In: Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022.
8575–8584. [doi: 10.1109/CVPR52688.2022.00839]
[36] Zhu J, Peng B, Li WQ, Shen HF, Zhang Z, Lei JJ. Multi-view stereo with transformer. arXiv:2112.00336, 2021.
[37] Zhang XD, Hu YT, Wang HC, Cao XB, Zhang BC. Long-range attention network for multi-view stereo. In: Proc. of the 2021 IEEE
Winter Conf. on Applications of Computer Vision. Waikoloa: IEEE, 2021. 3781–3790. [doi: 10.1109/WACV48630.2021.00383]
[38] Cao CJ, Ren XL, Fu YW. MVSFormer: Multi-view stereo by learning robust image features and temperature-based depth. arXiv:2208.
02541, 2022.
[39] Xu QS, Tao WB. PVSNet: Pixelwise visibility-aware multi-view stereo network. arXiv:2007.07714, 2020.
[40] Wang FJH, Galliani S, Vogel C, Speciale P, Pollefeys M. PatchmatchNet: Learned multi-view patchmatch stereo. In: Proc. of the 2021
IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 14189–14198. [doi: 10.1109/CVPR46437.2021.
01397]