Page 305 - 《软件学报》2025年第4期
P. 305

樊铭瑞 等: 基于深度学习的多视图立体视觉综述                                                         1711


                     view  stereo.  In:  Proc.  of  the  2021  IEEE/CVF  Int’l  Conf.  on  Computer  Vision.  Montreal:  IEEE,  2021.  14104–14113.  [doi:  10.1109/
                     ICCV48922.2021.01386]
                 [18]  Cheng K, Long XX, Yang KZ, Yao Y, Yin W, Ma YX, Wang WP, Chen XJ. GaussianPro: 3D Gaussian splatting with progressive
                     propagation. arXiv:2402.14650, 2024.
                 [19]  Choy CB, Xu DF, Gwak J, Chen K, Savarese S. 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction. In:
                     Proc. of the 14th European Conf. on Computer Vision. Amsterdam: Springer, 2016. 628–644. [doi: 10.1007/978-3-319-46484-8_38]
                 [20]  Kar  A,  Häne  C,  Malik  J.  Learning  a  multi-view  stereo  machine.  In:  Proc.  of  the  31st  Int’l  Conf.  on  Neural  Information  Processing
                     Systems. Long Beach: Curran Associates Inc., 2017. 364–375.
                 [21]  Paschalidou D, Ulusoy AO, Schmitt C, van Gool L, Geiger A. RayNet: Learning volumetric 3D reconstruction with ray potentials. In:
                     Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3897–3906. [doi: 10.1109/
                     CVPR.2018.00410]
                 [22]  Ji MQ, Zhang JZ, Dai QH, Fang L. SurfaceNet+: An end-to-end 3D neural network for very sparse multi-view stereopsis. IEEE Trans. on
                     Pattern Analysis and Machine Intelligence, 2021, 43(11): 4078–4093. [doi: 10.1109/TPAMI.2020.2996798]
                 [23]  Jensen R, Dahl A, Vogiatzis G, Tola E, Aanæs H. Large scale multi-view stereopsis evaluation. In: Proc. of the 2014 IEEE Conf. on
                     Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 406–413. [doi: 10.1109/CVPR.2014.59]

                 [24]  Xue YZ, Chen JS, Wan WT, Huang YQ, Yu C, Li TP, Bao JY. MVSCRF: Learning multi-view stereo with conditional random fields. In:
                     Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 4311–4320. [doi: 10.1109/ICCV.2019.00441]
                 [25]  Yang JY, Mao W, Alvarez JM, Liu MM. Cost volume pyramid based depth inference for multi-view stereo. IEEE Trans. on Pattern
                     Analysis and Machine Intelligence, 2022, 44(9): 4748–4760. [doi: 10.1109/TPAMI.2021.3082562]
                 [26]  Wei ZH, Zhu QT, Min C, Chen YS, Wang GP. AA-RMVSNet: Adaptive aggregation recurrent multi-view stereo network. In: Proc. of
                     the 2021 IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 6167–6176. [doi: 10.1109/ICCV48922.2021.00613]
                 [27]  Cai YC, Li L, Wang D, Liu XP. MFNet: Multi-level fusion aware feature pyramid based multi-view stereo network for 3D reconstruction.
                     Applied Intelligence, 2023, 53(4): 4289–4301. [doi: 10.1007/s10489-022-03754-3]
                 [28]  Zhang T. SuperMVS: Non-uniform cost volume for high-resolution multi-view stereo. arXiv:2203.14331, 2022.
                 [29]  Yan JF, Wei ZZ, Yi HW, Ding MY, Zhang RZ, Chen YS, Wang GP, Tai YW. Dense hybrid recurrent multi-view stereo net with dynamic
                     consistency checking. In: Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 674–689. [doi: 10.1007/978-3-
                     030-58548-8_39]
                 [30]  Cheng W, Bai ZY, Li JJ, Liu HJ, Yang LF. ADIM-MVSNet: Adaptive depth interval multi-view stereo network for 3D reconstruction. In:
                     Proc. of the 5th Int’l Conf. on Image and Graphics Processing. Beijing: ACM, 2022. 281–287. [doi: 10.1145/3512388.3512429]
                 [31]  Zhang  XD,  Yang  FZ,  Chang  M,  Qin  XF.  MG-MVSNet:  Multiple  granularities  feature  fusion  network  for  multi-view  stereo.
                     Neurocomputing, 2023, 528: 35–47. [doi: 10.1016/j.neucom.2023.01.062]
                 [32]  Yu AZ, Guo WY, Liu B, Chen X, Wang X, Cao XF, Jiang BC. Attention aware cost volume pyramid based multi-view stereo network for
                     3D reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 448–460. [doi: 10.1016/j.isprsjprs.2021.03.010]
                 [33]  Li Y, Li WY, Zhao ZJ, Fan JH. DRI-MVSNet: A depth residual inference network for multi-view stereo images. PLoS One, 2022, 17(3):
                     e0264721. [doi: 10.1371/journal.pone.0264721]
                 [34]  Weilharter  R,  Fraundorfer  F.  ATLAS-MVSNet:  Attention  layers  for  feature  extraction  and  cost  volume  regularization  in  multi-view
                     stereo.  In:  Proc.  of  the  26th  Int’l  Conf.  on  Pattern  Recognition.  Montreal:  IEEE,  2022.  3557–3563.  [doi:  10.1109/ICPR56361.2022.
                     9956633]
                 [35]  Ding YK, Yuan WT, Zhu QT, Zhang HT, Liu XY, Wang YJ, Liu X. TransMVSNet: Global context-aware multi-view stereo network
                     with  transformers.  In:  Proc.  of  the  2022  IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern  Recognition.  New  Orleans:  IEEE,  2022.
                     8575–8584. [doi: 10.1109/CVPR52688.2022.00839]
                 [36]  Zhu J, Peng B, Li WQ, Shen HF, Zhang Z, Lei JJ. Multi-view stereo with transformer. arXiv:2112.00336, 2021.
                 [37]  Zhang XD, Hu YT, Wang HC, Cao XB, Zhang BC. Long-range attention network for multi-view stereo. In: Proc. of the 2021 IEEE
                     Winter Conf. on Applications of Computer Vision. Waikoloa: IEEE, 2021. 3781–3790. [doi: 10.1109/WACV48630.2021.00383]
                 [38]  Cao CJ, Ren XL, Fu YW. MVSFormer: Multi-view stereo by learning robust image features and temperature-based depth. arXiv:2208.
                     02541, 2022.
                 [39]  Xu QS, Tao WB. PVSNet: Pixelwise visibility-aware multi-view stereo network. arXiv:2007.07714, 2020.
                 [40]  Wang FJH, Galliani S, Vogel C, Speciale P, Pollefeys M. PatchmatchNet: Learned multi-view patchmatch stereo. In: Proc. of the 2021
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 14189–14198. [doi: 10.1109/CVPR46437.2021.
                     01397]
   300   301   302   303   304   305   306   307   308   309   310