Page 359 - 《软件学报》2024年第6期
P. 359

闫璟辉 等: 中文医疗文本中的嵌套实体识别方法                                                         2935


                     domain. In: Proc. of the 2003 ACL Workshop on Natural Language Processing in Biomedicine. Sapporo: ACL, 2003. 49–56. [doi: 10.
                     3115/1118958.1118965]
                 [28]  Zhou GD, Zhang J, Su J, Shen D, Tan C. Recognizing names in biomedical texts: A machine learning approach. Bioinformatics, 2004,
                     20(7): 1178–1190. [doi: 10.1093/bioinformatics/bth060]
                 [29]  Zhou GD. Recognizing names in biomedical texts using mutual information independence model and SVM plus sigmoid. Int’l Journal of
                     Medical Informatics, 2006, 75(6): 456–467. [doi: 10.1016/j.ijmedinf.2005.06.012]
                 [30]  Ju MZ, Miwa M, Ananiadou S. A neural layered model for nested named entity recognition. In: Proc. of the 2018 Conf. of the North
                     American  Chapter  of  the  Association  for  Computational  Linguistics:  Human  Language  Technologies,  Vol.  1  (Long  Papers).  New
                     Orleans: ACL, 2018. 1446–1459. [doi: 10.18653/v1/N18-1131]
                 [31]  Wang J, Shou LD, Chen K, Chen G. Pyramid: A layered model for nested named entity recognition. In: Proc. of the 58th Annual Meeting
                     of the Association for Computational Linguistics. ACL, 2020. 5918–5928. [doi: 10.18653/v1/2020.acl-main.525]
                 [32]  Zheng CM, Cai Y, Xu JY, Leung HF, Xu GD. A boundary-aware neural model for nested named entity recognition. In: Proc. of the 2019
                     Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing. Hong Kong:
                     ACL, 2019. 357–366. [doi: 10.18653/v1/D19-1034]
                 [33]  Su JL, Murtadha A, Pan SF, Hou J, Sun J, Huang WW, Wen B, Liu YF. Global pointer: Novel efficient span-based approach for named
                     entity recognition. arXiv:2208.03054, 2022.
                 [34]  Zhang  NY,  Jia  QH,  Yin  KP,  Dong  L,  Gao  F,  Hua  NW.  Conceptualized  representation  learning  for  Chinese  biomedical  text  mining.
                     arXiv:2008.10813, 2020.

                 附中文参考文献:
                 [6]  周永惠. 关于现代汉语语素. 西南民族学院学报·哲学社会科学版, 2001, 22(7): 202–205.

                             闫璟辉(1992-), 男, 博士, 主要研究领域为知识                 徐金安(1970-), 男, 博士, 教授, 博士生导师,
                            抽取, 自然语言处理.                                  CCF  杰出会员, 主要研究领域为机器翻译, 自然
                                                                         语言处理, 知识图谱及其应用.





                             宗成庆(1963-), 男, 博士, 研究员, 博士生导师,
                            CCF  会士, 主要研究领域为机器翻译, 自然语言
                            处理.
   354   355   356   357   358   359   360   361   362   363   364