Page 216 - 《软件学报》2024年第6期
P. 216

2792                                                       软件学报  2024  年第  35  卷第  6  期


                     Software Engineering. Montreal: IEEE, 2019. 1073–1083. [doi: 10.1109/ICSE.2019.00111]
                  [9]  Bosu A, Carver JC, Bird C, Orbeck J, Chockley C. Process aspects and social dynamics of contemporary code review: Insights from open
                     source development and industrial practice at Microsoft. IEEE Trans. on Software Engineering, 2017, 43(1): 56–75. [doi: 10.1109/TSE.
                     2016.2576451]
                 [10]  Bosu A, Greiler M, Bird C. Characteristics of useful code reviews: An empirical study at Microsoft. In: Proc. of the 12th IEEE/ACM
                     Working Conf. on Mining Software Repositories. Florence: IEEE, 2015. 146–156. [doi: 10.1109/MSR.2015.21]
                 [11]  McIntosh S, Kamei Y, Adams B, Hassan AE. An empirical study of the impact of modern code review practices on software quality.
                     Empirical Software Engineering, 2016, 21(5): 2146–2189. [doi: 10.1007/s10664-015-9381-9]
                 [12]  Fatima N, Nazir S, Chuprat S. Software engineering wastes—A perspective of modern code review. In: Proc. of the 3rd Int’l Conf. on
                     Software Engineering and Information Management. Sydney: ACM, 2020. 93–99. [doi: 10.1145/3378936.3378953]
                 [13]  Czerwonka J, Greiler M, Tilford J. Code reviews do not find bugs. How the current code review best practice slows us down. In: Proc. of
                     the 37th IEEE/ACM IEEE Int’l Conf. on Software Engineering. Florence: IEEE, 2015. 27–28. [doi: 10.1109/ICSE.2015.131]
                 [14]  German DM, Robles G, Poo-Caamaño G, Yang X, Iida H, Inoue K. “Was my contribution fairly reviewed?”: A framework to study the
                     perception of fairness in modern code reviews. In: Proc. of the 40th Int’l Conf. on Software Engineering. Gothenburg: ACM, 2018.
                     523–534. [doi: 10.1145/3180155.3180217]

                 [15]  El Asri I, Kerzazi N, Uddin G, Khomh F, Idrissi MAJ. An empirical study of sentiments in code reviews. Information and Software
                     Technology, 2019, 114: 37–54. [doi: 10.1016/j.infsof.2019.06.005]
                 [16]  Egelman CD, Murphy-Hill E, Kammer E, Hodges MM, Green C, Jaspan C, Lin J. Predicting developers’ negative feelings about code
                     review. In: Proc. of the 42nd Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 174–185. [doi: 10.1145/3377811.3380414]
                 [17]  Bosu A, Carver JC. Impact of peer code review on peer impression formation: A survey. In: Proc. of the 2013 ACM/IEEE Int’l Symp. on
                     Empirical Software Engineering and Measurement. Baltimore: IEEE, 2013. 133–142. [doi: 10.1109/ESEM.2013.23]
                 [18]  Doğan E, Tüzün E. Towards a taxonomy of code review smells. Information and Software Technology, 2022, 142: 106737. [doi: 10.1016/
                     j.infsof.2021.106737]
                 [19]  Dong LM, Zhang H, Yang LX, Weng ZL, Yang X, Zhou X, Pan ZF. Survey on pains and best practices of code review. In: Proc. of the
                     28th Asia-Pacific Software Engineering Conf. Taipei: IEEE, 2021. 482–491. [doi: 10.1109/APSEC53868.2021.00055]
                 [20]  Hasan M, Iqbal A, Islam MRU, Rahman AJMI, Bosu A. Using a balanced scorecard to identify opportunities to improve code review
                     effectiveness: An industrial experience report. Empirical Software Engineering, 2021, 26(6): 129. [doi: 10.1007/s10664-021-10038-w]
                 [21]  Spadini D, Çalikli G, Bacchelli A. Primers or reminders?: The effects of existing review comments on code review. In: Proc. of the 42nd
                     ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 1171–1182. [doi: 10.1145/3377811.3380385]
                 [22]  Rahman MM, Roy CK, Kula RG. Predicting usefulness of code review comments using textual features and developer experience. In:
                     Proc. of the 14th IEEE/ACM Int’l Conf. on Mining Software Repositories. Buenos Aires: IEEE, 2017. 215–226. [doi: 10.1109/MSR.2017.
                     17]
                 [23]  Zhang  ML,  Zhou  ZH.  A  review  on  multi-label  learning  algorithms.  IEEE  Trans.  on  Knowledge  and  Data  Engineering,  2014,  26(8):
                     1819–1837. [doi: 10.1109/TKDE.2013.39]
                 [24]  Jiang  J,  Wu  QD,  Zhang  L.  Open  source  community  review  process  measurement  system  and  its  empirical  research.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2021, 32(12): 3698−3709 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6127.htm [doi:
                     10.13328/j.cnki.jos.006127]
                 [25]  Baysal O, Kononenko O, Holmes R, Godfrey MW. Investigating technical and non-technical factors influencing modern code review.
                     Empirical Software Engineering, 2016, 21(3): 932–959. [doi: 10.1007/s10664-015-9366-8]
                 [26]  Mirsaeedi  E,  Rigby  PC.  Mitigating  turnover  with  code  review  recommendation:  Balancing  expertise,  workload,  and  knowledge
                     distribution.  In:  Proc.  of  the  42nd  ACM/IEEE  Int ’l  Conf.  on  Software  Engineering.  Seoul:  ACM,  2020.  1183 –1195.  [doi:  10.1145/
                     3377811.3380335]
                 [27]  Hu YZ, Wang JJ, Li SB, Hu J, Wang Q. Response time constrained code reviewer recommendation. Ruan Jian Xue Bao/Journal of
                     Software, 2021, 32(11): 3372−3387 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6079.htm [doi: 10.13328/j.cnki.
                     jos.006079]
                 [28]  Rong GP, Zhang YF, Yang LX, Zhang FL, Kuang HY, Zhang H. Modeling review history for reviewer recommendation: A hypergraph
                     approach.  In:  Proc.  of  the  44th  Int ’l  Conf.  on  Software  Engineering.  Pittsburgh:  ACM,  2022.  1381 –1392.  [doi:  10.1145/3510003.
                     3510213]
                 [29]  Li ZX, Yu Y, Yin G, Wang T, Fan Q, Wang HM. Automatic classification of review comments in pull-based development model. In:
                     Proc. of the 9th Int’l Conf. on Software Engineering and Knowledge Engineering. Pittsburgh: SEKE, 2017. 572–577. [doi: 10.18293/
   211   212   213   214   215   216   217   218   219   220   221