Page 216 - 《软件学报》2024年第6期
P. 216
2792 软件学报 2024 年第 35 卷第 6 期
Software Engineering. Montreal: IEEE, 2019. 1073–1083. [doi: 10.1109/ICSE.2019.00111]
[9] Bosu A, Carver JC, Bird C, Orbeck J, Chockley C. Process aspects and social dynamics of contemporary code review: Insights from open
source development and industrial practice at Microsoft. IEEE Trans. on Software Engineering, 2017, 43(1): 56–75. [doi: 10.1109/TSE.
2016.2576451]
[10] Bosu A, Greiler M, Bird C. Characteristics of useful code reviews: An empirical study at Microsoft. In: Proc. of the 12th IEEE/ACM
Working Conf. on Mining Software Repositories. Florence: IEEE, 2015. 146–156. [doi: 10.1109/MSR.2015.21]
[11] McIntosh S, Kamei Y, Adams B, Hassan AE. An empirical study of the impact of modern code review practices on software quality.
Empirical Software Engineering, 2016, 21(5): 2146–2189. [doi: 10.1007/s10664-015-9381-9]
[12] Fatima N, Nazir S, Chuprat S. Software engineering wastes—A perspective of modern code review. In: Proc. of the 3rd Int’l Conf. on
Software Engineering and Information Management. Sydney: ACM, 2020. 93–99. [doi: 10.1145/3378936.3378953]
[13] Czerwonka J, Greiler M, Tilford J. Code reviews do not find bugs. How the current code review best practice slows us down. In: Proc. of
the 37th IEEE/ACM IEEE Int’l Conf. on Software Engineering. Florence: IEEE, 2015. 27–28. [doi: 10.1109/ICSE.2015.131]
[14] German DM, Robles G, Poo-Caamaño G, Yang X, Iida H, Inoue K. “Was my contribution fairly reviewed?”: A framework to study the
perception of fairness in modern code reviews. In: Proc. of the 40th Int’l Conf. on Software Engineering. Gothenburg: ACM, 2018.
523–534. [doi: 10.1145/3180155.3180217]
[15] El Asri I, Kerzazi N, Uddin G, Khomh F, Idrissi MAJ. An empirical study of sentiments in code reviews. Information and Software
Technology, 2019, 114: 37–54. [doi: 10.1016/j.infsof.2019.06.005]
[16] Egelman CD, Murphy-Hill E, Kammer E, Hodges MM, Green C, Jaspan C, Lin J. Predicting developers’ negative feelings about code
review. In: Proc. of the 42nd Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 174–185. [doi: 10.1145/3377811.3380414]
[17] Bosu A, Carver JC. Impact of peer code review on peer impression formation: A survey. In: Proc. of the 2013 ACM/IEEE Int’l Symp. on
Empirical Software Engineering and Measurement. Baltimore: IEEE, 2013. 133–142. [doi: 10.1109/ESEM.2013.23]
[18] Doğan E, Tüzün E. Towards a taxonomy of code review smells. Information and Software Technology, 2022, 142: 106737. [doi: 10.1016/
j.infsof.2021.106737]
[19] Dong LM, Zhang H, Yang LX, Weng ZL, Yang X, Zhou X, Pan ZF. Survey on pains and best practices of code review. In: Proc. of the
28th Asia-Pacific Software Engineering Conf. Taipei: IEEE, 2021. 482–491. [doi: 10.1109/APSEC53868.2021.00055]
[20] Hasan M, Iqbal A, Islam MRU, Rahman AJMI, Bosu A. Using a balanced scorecard to identify opportunities to improve code review
effectiveness: An industrial experience report. Empirical Software Engineering, 2021, 26(6): 129. [doi: 10.1007/s10664-021-10038-w]
[21] Spadini D, Çalikli G, Bacchelli A. Primers or reminders?: The effects of existing review comments on code review. In: Proc. of the 42nd
ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 1171–1182. [doi: 10.1145/3377811.3380385]
[22] Rahman MM, Roy CK, Kula RG. Predicting usefulness of code review comments using textual features and developer experience. In:
Proc. of the 14th IEEE/ACM Int’l Conf. on Mining Software Repositories. Buenos Aires: IEEE, 2017. 215–226. [doi: 10.1109/MSR.2017.
17]
[23] Zhang ML, Zhou ZH. A review on multi-label learning algorithms. IEEE Trans. on Knowledge and Data Engineering, 2014, 26(8):
1819–1837. [doi: 10.1109/TKDE.2013.39]
[24] Jiang J, Wu QD, Zhang L. Open source community review process measurement system and its empirical research. Ruan Jian Xue
Bao/Journal of Software, 2021, 32(12): 3698−3709 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6127.htm [doi:
10.13328/j.cnki.jos.006127]
[25] Baysal O, Kononenko O, Holmes R, Godfrey MW. Investigating technical and non-technical factors influencing modern code review.
Empirical Software Engineering, 2016, 21(3): 932–959. [doi: 10.1007/s10664-015-9366-8]
[26] Mirsaeedi E, Rigby PC. Mitigating turnover with code review recommendation: Balancing expertise, workload, and knowledge
distribution. In: Proc. of the 42nd ACM/IEEE Int ’l Conf. on Software Engineering. Seoul: ACM, 2020. 1183 –1195. [doi: 10.1145/
3377811.3380335]
[27] Hu YZ, Wang JJ, Li SB, Hu J, Wang Q. Response time constrained code reviewer recommendation. Ruan Jian Xue Bao/Journal of
Software, 2021, 32(11): 3372−3387 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6079.htm [doi: 10.13328/j.cnki.
jos.006079]
[28] Rong GP, Zhang YF, Yang LX, Zhang FL, Kuang HY, Zhang H. Modeling review history for reviewer recommendation: A hypergraph
approach. In: Proc. of the 44th Int ’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 1381 –1392. [doi: 10.1145/3510003.
3510213]
[29] Li ZX, Yu Y, Yin G, Wang T, Fan Q, Wang HM. Automatic classification of review comments in pull-based development model. In:
Proc. of the 9th Int’l Conf. on Software Engineering and Knowledge Engineering. Pittsburgh: SEKE, 2017. 572–577. [doi: 10.18293/