Page 196 - 《软件学报》2024年第6期
P. 196
2772 软件学报 2024 年第 35 卷第 6 期
132–142. [doi: 10.1145/3238147.3238187]
[8] Csurka G, Perronnin F. An efficient approach to semantic segmentation. Int’l Journal of Computer Vision, 2011, 95(2): 198–212. [doi: 10.
1007/s11263-010-0344-8]
[9] Woodlief T, Elbaum S, Sullivan K. Semantic image fuzzing of AI perception systems. In: Proc. of the 44th Int’l Conf. on Software
Engineering. Pittsburgh: IEEE, 2022. 1958–1969. [doi: 10.1145/3510003.3510212]
[10] Zhu XL, Wang HC, You HM, Zhang WH, Zhang YY, Liu S, Chen JJ, Wang Z, Li KQ. Survey on testing of intelligent systems in
autonomous vehicles. Ruan Jian Xue Bao/Journal of Software, 2021, 32(7): 2056–2077 (in Chinese with English abstract). http://www.jos.
org.cn/1000-9825/6266.htm [doi: 10.13328/j.cnki.jos.006266]
[11] Ijaz N, Wang YH. Automatic steering angle and direction prediction for autonomous driving using deep learning. In: Proc. of the 2021 Int’l
Symp. on Computer Science and Intelligent Controls. Rome: IEEE, 2021. 280–283. [doi: 10.1109/ISCSIC54682.2021.00058]
[12] Udacity. Challenge #2: Using deep learning to predict steering angles. 2016. https://medium.com/udacity/challenge-2-using-deep-learning-
to-predict-steering-angles-f42004a36ff3
[13] Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang JK, Zhang X, Zhao J,
Zieba K. End to end learning for self-driving cars. arXiv:1604.07316, 2016.
[14] Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The Cityscapes dataset for semantic
urban scene understanding. In: Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016.
3213–3223. [doi: 10.1109/CVPR.2016.350]
[15] Yu F, Chen HF, Wang X, Xian WQ, Chen YY, Liu FC, Madhavan V, Darrell T. BDD100K: A diverse driving dataset for heterogeneous
multitask learning. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 2633–2642.
[doi: 10.1109/CVPR42600.2020.00271]
[16] Menzel T, Bagschik G, Maurer M. Scenarios for development, test and validation of automated vehicles. In: Proc. of the 2018 IEEE
Intelligent Vehicles Symp. Changshu: IEEE, 2018. 1821–1827. [doi: 10.1109/IVS.2018.8500406]
[17] The Guardian. Tesla driver dies in first fatal crash while using autopilot mode. 2016. https://www.theguardian.com/technology/2016/jun/
30/tesla-autopilot-death-self-driving-car-elon-musk
[18] Sun Sentinel. Tesla crash: Officials likely to probe if autopilot driving system played role in most recent fatality. 2019. https://www.sun-
sentinel.com/news/florida/fl-ne-ap-tesla-second-fed-agency-20190303-story.html
[19] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proc. of the 2012 IEEE
Conf. on Computer Vision & Pattern Recognition. Providence: IEEE, 2012. 3354–3361. [doi: 10.1109/CVPR.2012.6248074]
[20] Ghenescu V, Mihaescu RE, Carata SV, Ghenescu MT, Barnoviciu E, Chindea M. Face detection and recognition based on general
purpose DNN object detector. In: Proc. of the 2018 Int’l Symp. on Electronics and Telecommunications. Piscataway: IEEE. 2018. 1–4.
[doi: 10.1109/ISETC.2018.8583861]
[21] Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T. Malware detection with deep neural network using process behavior. In: Proc.
of the 40th Annual Computer Software and Applications Conf. Atlanta: IEEE, 2016. 577–582. [doi: 10.1109/COMPSAC.2016.151]
[22] Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP, Ng AY. CheXNet:
Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:1711.05225, 2017.
[23] Ji SL, Li JF, Du TY, Li B. Survey on techniques, applications and security of machine learning interpretability. Journal of Computer
Research and Development, 2019, 56(10): 2071–2096 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2019.20190540]
[24] Du MN, Liu NH, Song QQ, Hu X. Towards explanation of DNN-based prediction with guided feature inversion. In: Proc. of the 24th
ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. London: ACM, 2018. 1358–1367. [doi: 10.1145/3219819.3220099]
[25] Zhou BL, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proc. of the 2016 IEEE
Conf. on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 2921–2929. [doi: 10.1109/CVPR.2016.319]
[26] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-
based localization. Int’l Journal of Computer Vision, 2020, 128(2): 336–359. [doi: 10.1007/s11263-019-01228-7]
[27] Pang YX, Lin JX, Qin T, Chen ZB. Image-to-image translation: Methods and applications. IEEE Trans. on Multimedia, 2022, 24:
3859–3881. [doi: 10.1109/TMM.2021.3109419]
[28] Isola P, Zhu JY, Zhou TH, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proc. of the 2017 IEEE Conf.
on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5967–5976. [doi: 10.1109/CVPR.2017.632]
[29] Chen QF, Koltun V. Photographic image synthesis with cascaded refinement networks. In: Proc. of the 2017 IEEE Int’l Conf. on Computer
Vision. Venice: IEEE, 2017. 1520–1529. [doi: 10.1109/ICCV.2017.168]
[30] Wang TC, Liu MY, Zhu JY, Tao A, Kautz J, Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional