Page 72 - 《软件学报》2024年第4期
P. 72
1650 软件学报 2024 年第 35 卷第 4 期
[195] Savva M, Kadian A, Maksymets O, et al. Habitat: A platform for embodied ai research. In: Proc. of the IEEE/CVF Int’l Conf. on
Computer Vision. IEEE, 2019. 9339−9347.
[196] Wortsman M, Ehsani K, Rastegari M, et al. Learning to learn how to learn: Self-adaptive visual navigation using meta-learning. In:
Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2019. 6750−6759.
[197] Yan L, Liu D, Song Y, et al. Multimodal aggregation approach for memory vision-voice indoor navigation with meta-learning. In:
Proc. of the IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. 2020. 5847−5854.
[198] Luo Q, Sorokin M, Ha S. A few shot adaptation of visual navigation skills to new observations using meta-learning. In: Proc. of the
IEEE Int’l Conf. on Robotics and Automation. 2021. 13231−13237.
[199] Hu Y, Chen M, Saad W, et al. Distributed multi-agent meta learning for trajectory design in wireless drone networks. IEEE Journal
on Selected Areas in Communications, 2021, 39(10): 3177−3192.
[200] Wen S, Wen Z, Zhang D, et al. A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement
learning based on transfer learning. Applied Soft Computing, 2021, 110: 107605.
[201] Yu Q, Luo L, Liu B, et al. Re-planning of quadrotors under disturbance based on meta reinforcement learning. Journal of
Intelligent & Robotic Systems, 2023, 107(1): Article Number 13.
[202] Nagabandi A, Clavera I, Liu S, et al. Learning to adapt in dynamic, real-world environments through meta-reinforcement learning.
In: Proc. of the Int’l Conf. on Learning Representations. 2019.
[203] Song X, Yang Y, Choromanski K, et al. Rapidly adaptable legged robots via evolutionary meta-learning. In: Proc. of the IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems. 2020. 3769−3776.
[204] Asayesh S, Chen M, Mehrandezh M, et al. Least-restrictive multi-agent collision avoidance via deep meta reinforcement learning
and optimal control. In: Proc. of the Robot Intelligence Technology and Applications. 2023. 213−225.
[205] Sun Y, Zhang Y. Conversational recommender system. In: Proc. of the Int’l ACM SIGIR Conf. on Research and Development in
Information Retrieval. 2018. 235−244.
[206] Lei W, He X, Miao Y, et al. Estimation-action-reflection: Towards deep interaction between conversational and recommender
systems. In: Proc. of the Int’l Conf. on Web Search and Data Mining. 2020. 304−312.
[207] Deng Y, Li Y, Sun F, et al. Unified conversational recommendation policy learning via graph-based reinforcement learning. In:
Proc. of the Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. 2021. 1431−1441.
[208] Zou L, Xia L, Gu Y, et al. Neural interactive collaborative filtering. In: Proc. of the Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval. 2020. 749−758.
[209] Chu Z, Wang H, Xiao Y, et al. Meta policy learning for cold-start conversational recommendation. In: Proc. of the ACM Int’l Conf.
on Web Search and Data Mining. Association for Computing Machinery, 2023. 222−230.
附中文参考文献:
[17] 李凡长, 刘洋, 吴鹏翔, 等. 元学习研究综述. 计算机学报, 2021, 44(2): 422−446.
[18] 谭晓阳, 张哲. 元强化学习综述. 南京航空航天大学学报, 2021, 53(5): 653−663.
[21] 赵春宇, 赖俊. 元强化学习综述. 计算机应用研究, 2023, 40(1): 1−10.
[82] 陆嘉猷, 凌兴宏, 刘全, 等. 基于自适应调节策略熵的元强化学习算法. 计算机科学, 2021, 48(6): 168−174.
[98] 聂凯, 孟庆海. 基于层次情节性元强化学习的对抗行为评估. 指挥控制与仿真, 2021, 43(2): 65−71.
[152] 吴少波, 傅启明, 陈建平, 吴宏杰, 陆悠. 基于相对熵的元逆强化学习方法. 计算机科学, 2021,48(9):257−263.
陈奕宇(1998-), 男, 博士生, CCF 学生 丁天雨(1992-), 男, 博士, 高级研究员,
会员, 主要研究领域为元强化学习, 机器 主要研究领域为深度表示学习, 优化与
人控制. 计算机视觉.
霍静(1989-), 女, 博士, 准聘副教授, 高阳(1972-), 男, 博士, 教授, CCF 杰出
CCF 专业会员, 主要研究领域为机器学 会员, 主要研究领域为人工智能, 机器学
习, 计算机视觉, 具身智能. 习, 智能系统.