Page 261 - 《软件学报》2024年第4期
P. 261

李贺 等: 基于顶点组重分配的动态增量图划分算法                                                        1839


                 [19]  Tsourakakis C, Gkantsidis C, Radunovic B, Vojnovic M. FENNEL: Streaming graph partitioning for massive scale graphs. In: Proc. of
                     the 7th ACM Int’l Conf. on Web Search and Data Mining. New York: ACM, 2014. 333–342. [doi: 10.1145/2556195.2556213]
                 [20]  Zhang W, Chen Y, Dai D. AKIN: A streaming graph partitioning algorithm for distributed graph storage systems. In: Proc. of the 18th
                     IEEE/ACM Int’l Symp. on Cluster, Cloud and Grid Computing. Washington: IEEE, 2018. 183–192. [doi: 10.1109/CCGRID.2018.00033]
                 [21]  LI Q, LI HX, Zhong J, Ying CT, LI Q. Research on graph partitioning in heterogeneous computing environment. Chinese Journal of
                     Computers, 2021, 44(8): 1751–1766 (in  Chinese  with  English  abstract). [doi: 10.11897/SP.J.1016.2021.01751]
                 [22]  Firth H, Missier P, Aiston J. Loom: Query-aware partitioning of online graphs. In: Proc. of the 21st Int’l Conf. on Extending Database
                     Technology. Vienna: EDBT, 2018. 337–348.
                 [23]  Schloegel K, Karypis G, Kumar V. Dynamic repartitioning of adaptively refined meshes. In: Proc. of the 1998 ACM/IEEE Conf. on
                     Supercomputing. Orlando: IEEE, 1998. 29. [doi: 10.1109/SC.1998.10025]
                 [24]  Vaquero LM, Cuadrado F, Logothetis D, Martella C. Adaptive partitioning for large-scale dynamic graphs. In: Proc. of the 34th Int’l
                     Conf. on Distributed Computing Systems. Madrid: IEEE, 2014. 144–153. [doi: 10.1109/ICDCS.2014.23]
                 [25]  Nicoara D, Kamali S, Daudjee K, Chen L. Hermes: Dynamic partitioning for distributed social network graph databases. In: Proc. of the
                     18th Int’l Conf. on Extending Database Technology. Brussels: EDBT, 2015. 25–36.
                 [26]  Li H, Yuan H, Huang JB, Cui JT, Yoo J. Dynamic graph repartitioning: From single vertex to vertex group. In: Proc. of the 25th Int’l
                     Conf. on Database Systems for Advanced Applications. Jeju: Springer, 2020. 482–497. [doi: 10.1007/978-3-030-59416-9_29]
                 [27]  Ou  CW,  Ranka  S.  Parallel  incremental  graph  partitioning  using  linear  programming.  In:  Proc.  of  the  1994  ACM/IEEE  Conf.  on
                     Supercomputing. Washington: IEEE, 1994. 458–467. [doi: 10.1109/SUPERC.1994.344309]
                 [28]  Fan WF, Liu MY, Tian C, Xu RQ, Zhou JR. Incrementalization of graph partitioning algorithms. Proc. of the VLDB Endowment, 2020,
                     13(8): 1261–1274. [doi: 10.14778/3389133.3389142]
                 [29]  Huang  JW,  Abadi  DJ.  Leopard:  Lightweight  edge-oriented  partitioning  and  replication  for  dynamic  graphs.  Proc.  of  the  VLDB
                     Endowment, 2016, 9(7): 540–551. [doi: 10.14778/2904483.2904486]
                 [30]  Dai D, Zhang W, Chen Y. IOGP: An incremental online graph partitioning algorithm for distributed graph databases. In: Proc. of the 26th
                     Int ’l  Symp.  on  High-performance  Parallel  and  Distributed  Computing.  Washington:  ACM,  2017.  219 –230.  [doi:  10.1145/3078597.
                     3078606]
                 [31]  Rahimian F, Payberah AH, Girdzijauskas S, Jelasity M, Haridi S. JA-BE-JA: A distributed algorithm for balanced graph partitioning. In:
                     Proc. of the 7th IEEE Int’l Conf. on Self-adaptive and Self-organizing Systems. Philadelphia: IEEE, 2013. 51–60. [doi: 10.1109/SASO.
                     2013.13]
                 [32]  Wang L, Xiao YH, Shao B, Wang HX. How to partition a billion-node graph. In: Proc. of the 30th IEEE Int’l Conf. on Data Engineering.
                     Chicago: IEEE, 2014. 568–579. [doi: 10.1109/ICDE.2014.6816682]
                 [33]  Zheng AG, Labrinidis A, Chrysanthis PK. Planar: Parallel lightweight architecture-aware adaptive graph repartitioning. In: Proc. of the
                     32nd IEEE Int’l Conf. on Data Engineering. Helsinki: IEEE, 2016. 121–132. [doi: 10.1109/ICDE.2016.7498234]
                 [34]  Shang ZC, Yu JX. Catch the wind: Graph workload balancing on cloud. In: Proc. of the 29th IEEE Int’l Conf. on Data Engineering.
                     Brisbane: IEEE, 2013. 553–564. [doi: 10.1109/ICDE.2013.6544855]
                 [35]  Xu N, Chen L, Cui B. LogGP: A log-based dynamic graph partitioning method. Proc. of the VLDB Endowment, 2014, 7(14): 1917–1928.
                     [doi: 10.14778/2733085.2733097]
                 [36]  Predari  M,  Esnard  A.  A  k-way  greedy  graph  partitioning  with  initial  fixed  vertices  for  parallel  applications.  In:  Proc.  of  the  24th
                     Euromicro Int’l Conf. on Parallel, Distributed, and Network-based Processing. Heraklion: IEEE, 2016. 280–287. [doi: 10.1109/PDP.2016.
                     109]
                 [37]  Abdolrashidi A, Ramaswamy L. Continual and cost-effective partitioning of dynamic graphs for optimizing big graph processing systems.
                     In: Proc. of the 2016 IEEE Int’l Congress on Big Data. San Francisco: IEEE, 2016. 18–25. [doi: 10.1109/BigDataCongress.2016.12]
                 [38]  Pang S, Chen CJ, Wei T. A realtime community detection algorithm: Incremental label propagation. In: Proc. of the 1st Int’l Conf. on
                     Future Information Networks. Beijing: IEEE, 2009. 313–317. [doi: 10.1109/ICFIN.2009.5339592]
                 [39]  Raghavan NU, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Physical Review
                     E, 2007, 76(3): 036106. [doi: 10.1103/PhysRevE.76.036106]
                 [40]  Stanford large network dataset collection. 2014. http://snap.stanford.edu/data/index.html
                 [41]  Rossi RA, Ahmed NK. The network data repository with interactive graph analytics and visualization. In: Proc. of the 29th AAAI Conf.
                     on Artificial Intelligence. Austin: AAAI Press, 2015. 4292–4293. [doi: 10.1609/aaai.v29i1.9277]
   256   257   258   259   260   261   262   263   264   265   266