Page 234 - 《软件学报》2024年第4期
P. 234

1812                                                       软件学报  2024  年第  35  卷第  4  期


                 [16]  Ding  YQ.  Probabilistic  generative  models-based  topic  modeling  of  text  and  its  applications  [Ph.D.  Thesis].  Hangzhou:  Zhejiang
                     University, 2010 (in Chinese with English abstract).
                 [17]  Wang C, Blei DM. Variational inference for the nested Chinese restaurant process. In: Proc. of the 22nd Int’l Conf. on Neural Information
                     Processing Systems. Vancouver: Curran Associates Inc., 2009. 1990–1998.
                 [18]  Chen JF, Zhu J, Lu J, Liu SX. Scalable inference for nested Chinese restaurant process topic models. In: Proc. of the 23rd ACM SIGKDD
                     Conf. on Knowledge Discovery and Data Mining. Halifax, 2017. 1–9.
                 [19]  Chen JF, Zhu J, Lu J, Liu SX. Scalable training of hierarchical topic models. Proc. of the VLDB Endowment, 2018, 11(7): 826–839. [doi:
                     10.14778/3192965.3192972]
                 [20]  Song J, Huang Y, Qi X, Li YH, Li F, Fu K, Huang TL. Discovering hierarchical topic evolution in time-stamped documents. Journal of
                     the Association for Information Science and Technology, 2016, 67(4): 915–927. [doi: 10.1002/asi.23439]
                 [21]  Xuan JY, Lu J, Zhang GQ. A survey on bayesian nonparametric learning. ACM Computing Surveys, 2019, 52(1): 13. [doi: 10.1145/
                     3291044]
                 [22]  Huang WP, Laitonjam N, Piao GY, Hurley NJ. Inferring hierarchical mixture structures: A Bayesian nonparametric approach. In: Proc. of
                     the 25th Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Delhi: Springer, 2021. 206–218. [doi: 10.1007/978-3-030-75768-
                     7_17]
                 [23]  Li  W,  McCallum  A.  Pachinko  allocation:  DAG-structured  mixture  models  of  topic  correlations.  In:  Proc.  of  the  23rd  Int ’l  Conf.  on
                     Machine Learning. Pittsburgh: ACM, 2006. 577–584. [doi: 10.1145/1143844.1143917]
                 [24]  Hida R, Takeishi N, Yairi T, Hori K. Dynamic and static topic model for analyzing time-series document collections. In: Proc. of the 56th
                     Annual Meeting of the Association for Computational Linguistics. Melbourne: ACL, 2018. 516–520. [doi: 10.18653/v1/P18-2082]
                 [25]  Liu R, Wang XG, Wang DQ, Zuo Y, Zhang H, Zheng XZ. Topic splitting: A hierarchical topic model based on non-negative matrix
                     factorization. Journal of Systems Science and Systems Engineering, 2018, 27(4): 479–496. [doi: 10.1007/s11518-018-5375-7]
                 [26]  Kim H, Drake B, Endert A, Park H. ArchiText: Interactive hierarchical topic modeling. IEEE Trans. on Visualization and Computer
                     Graphics, 2021, 27(9): 3644–3655. [doi: 10.1109/TVCG.2020.2981456]
                 [27]  Yang SH, Kolcz A, Schlaikjer A, Gupta P. Large-scale high-precision topic modeling on twitter. In: Proc. of the 20th ACM SIGKDD Int’l
                     Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2014. 1907–1916. [doi: 10.1145/2623330.2623336]
                 [28]  Chen ZY, Mukherjee A, Liu B, Hsu M, Castellanos M, Ghosh R. Leveraging multi-domain prior knowledge in topic models. In: Proc. of
                     the 23rd Int’l Joint Conf. on Artificial Intelligence. Beijing: AAAI, 2013. 2071–2077.
                 [29]  Chen ZY, Liu B. Mining topics in documents: Standing on the shoulders of big data. In: Proc. of the 20th ACM SIGKDD Int’l Conf. on
                     Knowledge Discovery and Data Mining. New York: ACM, 2014. 1116–1125. [doi: 10.1145/2623330.2623622]
                 [30]  Li CL, Wang HR, Zhang ZQ, Sun AX, Ma ZY. Topic modeling for short texts with auxiliary word embeddings. In: Proc. of the 39th Int’l
                     ACM SIGIR Conf. on Research and Development in Information Retrieval. Pisa: ACM, 2016. 165–174. [doi: 10.1145/2911451.2911499]
                 [31]  Liu SP, Yin J, Ouyang J, Huang Y, Yang XY. Topic mining from microblogs based on MB-HDP model. Chinese Journal of Computers,
                     2015, 38(7): 1408–1419 (in  Chinese  with  English  abstract). [doi: 10.11897/SP.J.1016.2015.01408]
                 [32]  Alam  H,  Peltonen  J,  Nummenmaa  J,  Järvelin  K.  Tree-structured  hierarchical  dirichlet  process.  In:  Proc.  of  the  15th  Int ’l  Symp.  on
                     Distributed Computing and Artificial Intelligence. Toledo: Springer, 2018. 291–299. [doi: 10.1007/978-3-319-99608-0_33]
                 [33]  Xu YS, Yin JW, Huang JB, Yin YY. Hierarchical topic modeling with automatic knowledge mining. Expert Systems with Applications,
                     2018, 103: 106–117. [doi: 10.1016/j.eswa.2018.03.008]

                 附中文参考文献:
                  [1]  刘涛雄, 徐晓飞. 互联网搜索行为能帮助我们预测宏观经济吗? 经济研究, 2015, 50(12): 68–83.
                 [12]  张奕韬, 万常选, 刘喜平, 江腾蛟, 刘德喜, 廖国琼. 基于PSP_HDP主题模型的非结构化经济指标挖掘. 软件学报, 2020, 31(3):
                     845–865. http://www.jos.org.cn/1000-9825/5898.htm [doi: 10.13328/j.cnki.jos.005898]
                 [13]  韩忠明, 张梦玫, 李梦琪, 段大高, 陈谊. 面向复杂主题建模的流式层次狄里克雷过程. 计算机学报, 2019, 42(7): 1539–1552. [doi: 10.
                     11897/SP.J.1016.2019.01539]
                 [16]  丁轶群. 基于概率生成模型的文本主题建模及其应用 [博士学位论文]. 杭州: 浙江大学, 2010.
                 [31]  刘少鹏, 印鉴, 欧阳佳, 黄云, 杨晓颖. 基于MB-HDP模型的微博主题挖掘. 计算机学报, 2015, 38(7): 1408–1419. [doi: 10.11897/SP.J.
                     1016.2015.01408]
   229   230   231   232   233   234   235   236   237   238   239