Page 60 - 《软件学报》2021年第11期
P. 60

3386                                Journal of Software  软件学报 Vol.32, No.11, November 2021

                 [9]    Lipcak J, Rossi B. A large-scale study on source code reviewer recommendation. In: Proc. of the 2018 44th Euromicro Conf. on
                     Software Engineering and Advanced Applications (SEAA). IEEE, 2018. [doi: 10.1109/SEAA.2018.00068]
                [10]    Yu Y, Wang H, Yin G, Wang T. Reviewer recommendation for pull-requests in Github: What can we learn from code review and
                     bug assignment? Information and Software Technology, 2016,74:204−218.
                [11]    Jiang J, He JH, Chen XY. CoreDevRec: Automatic core member recommendation for contribution evaluation. Journal of Computer
                     Science and Technology, 2015,30(5):998−1016.
                [12]    Xia X, Lo D, Wang X, Yang X. Who should review this change? Putting text and file location analyses together for more accurate
                     recommendations. In: Proc. of the 2015 IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). IEEE, 2015. 261−270.
                [13]    Xia Z, Sun H, Jiang J, Wang X, Liu X. A hybrid approach to code reviewer recommendation with collaborative filtering. In: Proc.
                     of the 2017 6th Int’l Workshop on Software Mining (Software Mining). IEEE, 2017. 24−31.
                [14]    Yang C, Zhang X, Zeng L, Fan Q, Yin G, Wang H. An empirical study of reviewer recommendation in pull-based development
                     model. In: Proc. of the 9th Asia-Pacific Symp. on Internetware. ACM, 2017. Article No.14.
                [15]    https://google.github.io/eng-practices/review/reviewer/speed.html
                [16]    Rahman MM, Roy  CK, Collins  JA. Correct: Code  reviewer  recommendation  in Github  based  on cross-project and  technology
                     experience. In: Proc. of the IEEE/ACM Int’l Conf. on Software Engineering Companion (ICSE-C). IEEE, 2016. 222−231.
                [17]    Teich J. Pareto-front exploration with uncertain objectives. In: Proc. of the EMO 2001. 2001. 314−328.
                [18]     Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:
                     NSGA-II. In: Proc. of the PPSN 2000. 2000. 849−858.
                [19]    Mondal D, Hemmati H, Durocher S. Exploring test suite diversification and code coverage in multi-objective test case selection. In:
                     Proc. of the ICST 2015. 2015. 1−10.
                [20]    Yoo S, Harman M. Pareto efficient multi-objective test case selection. In: Proc. of the ISSTA 2007. 2007. 140−150.
                [21]    Tantithamthavorn C, Teekavanich R, Ihara A, Matsumoto KI. Mining a change history to quickly identify bug locations: A case
                     study of the eclipse project. In: Proc. of the ISSREW 2013. 2013. 108−113.
                [22]    Harman M,  Mansouri  SA,  Zhang Y. Search-based  software engineering: Trends,  techniques and applications. ACM Computing
                     Surveys (CSUR), 2012,45(1):Article No.11.
                [23]    Epitropakis MG, Yoo  S,  Harman M, Burke EK. Empirical evaluation  of  Pareto efficient multi-objective  regression  test case
                     prioritisation. In: Proc. of the ISSTA 2015. 2015. 234−245.
                [24]    Silva  RA, de Souza SDRS,  de Souza PSL.  A systematic  review on search-based  mutation testing. Information  and Software
                     Technology, 2017,81:19−35.
                [25]    Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In: Proc. of the FSE 2009. 2009. 111−120.
                [26]    Langdon WB, Harman M, Jia Y. Efficient multi-objective higher order mutation testing with genetic programming. The Journal of
                     Systems and Software, 2010,83(12):2416−2430.
                [27]    Rigby PC, German DM, Cowen L, Storey MA. Peer review on open-source software projects: Parameters, statistical models, and
                     theory. ACM Trans. on Software Engineering and Methodology (TOSEM), 2014,23(4):Article No.35.
                [28]    Sauer C, Jeffery DR, Land L, Yetton P. The effectiveness of software development technical reviews: A behaviorally motivated
                     program of research. IEEE Trans. on Software Engineering, 2000,26(1):1−14.
                [29]    Tantithamthavorn C, Ihara A, Matsumoto KI. Using co-change histories to improve bug localization performance. In: Proc. of the
                     SNPD 2013. 2013. 543−548.
                [30]    Jiang J,  Yang Y,  He J,  Blanc  X, Zhang L. Who should  comment on this pull request?  Analyzing  attributes  for  more  accurate
                     commenter recommendation in pull-based development. Information and Software Technology, 2017,84:48−62.
                [31]    Jiang  J, David L, Zhang L. Who  should make  decision  on  this  pull  request? Analyzing time-decaying relationships and  file
                     similarities for integrator prediction. The Journal of Systems and Software, 2019,154:196−210.
                [32]    Lu S, Yang  D,  Hu J,  Zhang  X.  Code reviewer recommendation based  on time  and impact factor for pull  request in  Github.
                     Computer Systems & Applications, 2016,25(12):155−161 (in Chinese with English abstract).
   55   56   57   58   59   60   61   62   63   64   65