Page 44 - 《软件学报》2021年第11期
P. 44

3370                                Journal of Software  软件学报 Vol.32, No.11, November 2021

                [19]    Konecny J,  Liu J,  Richtárik P, Takác  M.  Mini-batch semi-stochastic gradient  descent in the proximal  setting. IEEE Journal of
                     Selected Topics in Signal Processing, 2016,10(2):242−255.
                [20]    Bennell JA,  Cabo M,  Martínez-Sykora  A.  A beam search  approach to solve the  convex irregular bin packing problem  with
                     guillotine guts. European Journal of Operational Research, 2018,270(1):89−102.
                [21]    Bielik P, Raychev V, Vechev M. PHOG: Probabilistic model for code. In: Proc. of the Int’l Conf. on Machine Learning. IMLS,
                     2016. 2933−2942.
                [22]    White M, Vendome  C, Linares-Vasquez M.  Toward deep learning  software repositories. In: Proc. of the Mining Software
                     Repositories. New York: IEEE, 2015. 334−345.
                [23]    Keivanloo I, Rilling J, Zou Y. Spotting working code examples. In: Proc. of the 36th Int’l Conf. on Software Engineering. New
                     York: ACM, 2014. 664−675.
                [24]    Raychev V, Bielik P, Vechev M, Krause A. Learning programs from noisy data. In: Proc. of the ACM SIGPLAN-SIGACT Symp.
                     on Principles of Programming Languages. New York: ACM, 2016. 761−774.
                [25]    Reiss SP. Semantics-based code search demonstration proposal. In: Proc. of the IEEE Int’l Conf. on Software Maintenance. New
                     York: IEEE, 2009. 385−386.
                [26]    Bajracharya S, Ossher J, Masiero PC, Lopes CV. A test-driven approach to code search and its application to the reuse of auxiliary
                     functionality. Information & Software Technology, 2011,53(4):294−306.
                [27]    Hill  E, Pollock  L,  Vijayshanker  K. Improving  source  code search  with natural language phrasal representations of  method
                     signatures. In: Proc. of the IEEE/ACM Int’l Conf. on Automated Software Engineering. New York: IEEE, 2011. 524−527.
                [28]    Nguyen TV, Nguyen AT, Phan HD, et al. Combining Word2Vec with revised vector space model for better code retrieval. In: Proc.
                     of the Int’l Conf. on Software Engineering Companion. New York: IEEE, 2017. 183−185.
                [29]    Hill E, Pollock L, Vijay-Shanker K. Automatically capturing source code context of NL-queries for software maintenance and reuse.
                     In: Proc. of the Int’l Conf. on Software Engineering. New York: IEEE, 2009. 232−242.
                [30]    Roldan-Vega M, Mallet G, Hill E. CONQUER: A tool for NL-based query refinement and contextualizing code search results. In:
                     Proc. of the IEEE Int’l Conf. on Software Maintenance. New York: IEEE Computer Society, 2013. 512−515.
                [31]    Lu M, Sun X, Wang S. Query expansion via WordNet for effective code search. In: Proc. of the Int’l Conf. on Software Analysis,
                     Evolution and Reengineering. New York: IEEE, 2015. 545−549.
                [32]    Haiduc S, Rosa GD, Bavota G. Query quality prediction and reformulation for source code search: The refoqus tool. In: Proc. of the
                     2013 Int’l Conf. on Software Engineering. New York: IEEE Computer Society, 2013. 1307−1310.
                [33]    Rahman MM, Roy CK, Lo D. RACK: Automatic API recommendation using crowdsourced knowledge. In: Proc. of the Int’l Conf.
                     on Software Analysis, Evolution, and Reengineering. New York: IEEE, 2016. 349−359.
                [34]    Reed  S,  Freitas N. Neural  programmer-interpreters.  In:  Proc. of  the Int’l Conf.  on Learning Representations. arXiv  preprint
                     arXiv:1511.06279, 2015.
                [35]    Li C,  Tarlow  D, Gaunt AL, Brockschmidt M, Kushman N. Neural  program lattices.  In:  Proc.  of  the  Int’l Conf.  on Learning
                     Representations. Springer-Verlag, 2017.
                [36]    Asaduzzaman M, Roy CK, Schneider KA, Hou D. A simple, efficient, context-sensitive approach for code completion. Journal of
                     Software: Evolution and Process, 2016,28(7):512−541.
                [37]    Allamanis M, Barr ET,  Bird C,  Sutton CA.  Suggesting accurate method and class  names.  In:  Proc.  of the Joint  Meeting  on
                     Foundations of Software Engineering. New York: ACM, 2015. 38−49.
                [38]    Mou  L,  Men  R, Li  G,  Zhang  L, Jin Z. On  end-to-end program generation from user intention by deep neural networks.  arXiv
                     preprint arXiv:1510.07211, 2015.
                [39]    Tu Z, Su Z, Devanbu P. On the localness of software. In: Proc. of the 22nd ACM SIGSOFT Int’l Symp. on Foundations of Software
                     Engineering. ACM, 2014. 269−280.
                [40]    Wang S, Lo D, Jiang L. Active code search: Incorporating user feedback to improve code search relevance. In: Proc. of the ACM/
                     IEEE Int’l Conf. on Automated Software Engineering. New York: ACM, 2014. 677−682.
                [41]    Ishihara T, Hotta K, Higo Y, Kusumoto S. Reusing reused code. In: Proc. of the 20th Working Conf. on Reverse Engineering. New
                     York: IEEE Computer Society, 2013. 457−461.
   39   40   41   42   43   44   45   46   47   48   49