Page 342 - 《软件学报》2021年第11期
P. 342
3668 Journal of Software 软件学报 Vol.32, No.11, November 2021
[6] Bevilacqua M, Roumy A, Guillemot C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor
embedding. In: Proc. of the British Machine Vision Conf. 2012.
[7] Borman S, Stevenson RL. Super-resolution from image sequences—A review. In: Proc. of the Midwest Symp. on Circuits and
Systems. 1998. 374−378.
[8] Bruna J, Sprechmann P, LeCun Y. Super-resolution with deep convolutional sufficient statistics. In: Proc. of the Int’l Conf. on
Learning Representations. 2016.
[9] Dong C, Loy CC, He K, et al. Image super-resolution using deep convolutional networks. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2016,38(2):295−307.
[10] Dosovitskiy A, Brox T. Generating images with perceptual similarity metrics based on deep networks. In: Proc. of the Advances in
Neural Information Processing Systems. 2016. 658−666.
[11] Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 105−114.
[12] Zhu JY, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. of the
IEEE Int’l Conf. on Computer Vision. 2017. 2223−2232.
[13] Zeng K, Ding SF. Single image super-resolution using a polymorphic parallel CNN. Applied Intelligence, 2019,49(1):292−300.
[14] Yang J, Wright J, Huang TS, et al. Image super-resolution as sparse representation of raw image patches. In: Proc. of the 2008
IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2008. 1−8.
[15] Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition. Proc. of the IEEE, 2010,98(6):
1031−1044.
[16] Dong W, Zhang L, Shi G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive
regularization. IEEE Trans. on Image Processing, 2010,20(7):1838−1857.
[17] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Proc. of the Int’l Conf. on Neural Information
Processing Systems. 2014. 2672−2680.
[18] Zhao J, Mathieu M, LeCun Y. Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126, 2016.
[19] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs. In: Proc. of the Advances in Neural Information
Processing Systems. 2017. 5769−5779.
[20] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations. In: Proc. of the Curves and Surfaces.
Springer-Verlag, 2012. 711−730.
[21] Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In: Proc. of the IEEE Int’l Conf. on Computer Vision, Vol.2. 2001. 416−423.
[22] Liu ZW, Luo P, Wang XG, et al. Deep learning face attributes in the wild. In: Proc. of the Int’l Conf. on Computer Vision. 2015.
3730−3738.
[23] Huang JB, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition. 2015. 5197−5206.
丁玲(1994-),女,讲师,主要研究领域为机 张健(1990-),男,博士,讲师,CCF 专业会
器学习,数据挖掘. 员,主要研究领域为机器学习,模式识别.
丁世飞(1963-),男,博士,教授,博士生导 张子晨(1992-),男,博士生,主要研究领域
师,CCF 杰出会员,主要研究领域为智能信 为机器学习,模式识别.
息处理,人工智能与模式识别,机器学习,
数据挖掘,粗糙集,软计算,大数据分析,云
计算.