Page 342 - 《软件学报》2021年第11期
P. 342

3668                               Journal of Software  软件学报 Vol.32, No.11, November 2021

                 [6]    Bevilacqua  M, Roumy A, Guillemot  C,  et  al.  Low-complexity single-image  super-resolution based on nonnegative neighbor
                     embedding. In: Proc. of the British Machine Vision Conf. 2012.
                 [7]    Borman S, Stevenson  RL. Super-resolution from  image sequences—A review. In: Proc. of  the  Midwest Symp. on  Circuits  and
                     Systems. 1998. 374−378.
                 [8]    Bruna J, Sprechmann P,  LeCun  Y. Super-resolution  with deep  convolutional sufficient  statistics.  In: Proc. of  the Int’l  Conf. on
                     Learning Representations. 2016.
                 [9]    Dong C, Loy CC, He K, et al. Image super-resolution using deep convolutional networks. IEEE Trans. on Pattern Analysis and
                     Machine Intelligence, 2016,38(2):295−307.
                [10]    Dosovitskiy A, Brox T. Generating images with perceptual similarity metrics based on deep networks. In: Proc. of the Advances in
                     Neural Information Processing Systems. 2016. 658−666.
                [11]    Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proc. of
                     the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 105−114.
                [12]    Zhu JY, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. of the
                     IEEE Int’l Conf. on Computer Vision. 2017. 2223−2232.
                [13]    Zeng K, Ding SF. Single image super-resolution using a polymorphic parallel CNN. Applied Intelligence, 2019,49(1):292−300.
                [14]    Yang J, Wright J, Huang TS, et al. Image super-resolution as sparse representation of raw image patches. In: Proc. of the 2008
                     IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2008. 1−8.
                [15]    Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition. Proc. of the IEEE, 2010,98(6):
                     1031−1044.
                [16]    Dong W, Zhang L,  Shi G,  et  al.  Image deblurring  and super-resolution by  adaptive sparse domain selection  and  adaptive
                     regularization. IEEE Trans. on Image Processing, 2010,20(7):1838−1857.
                [17]    Goodfellow I, Pouget-Abadie J,  Mirza M,  et  al.  Generative  adversarial nets. In: Proc. of the Int’l  Conf. on  Neural Information
                     Processing Systems. 2014. 2672−2680.
                [18]    Zhao J, Mathieu M, LeCun Y. Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126, 2016.
                [19]    Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs. In: Proc. of the Advances in Neural Information
                     Processing Systems. 2017. 5769−5779.
                [20]    Zeyde  R,  Elad  M, Protter M. On single image scale-up using sparse-representations.  In:  Proc. of the  Curves  and Surfaces.
                     Springer-Verlag, 2012. 711−730.
                [21]    Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation
                     algorithms and measuring ecological statistics. In: Proc. of the IEEE Int’l Conf. on Computer Vision, Vol.2. 2001. 416−423.
                [22]    Liu ZW, Luo P, Wang XG, et al. Deep learning face attributes in the wild. In: Proc. of the Int’l Conf. on Computer Vision. 2015.
                     3730−3738.
                [23]    Huang JB, Singh  A, Ahuja  N. Single  image super-resolution from transformed self-exemplars.  In: Proc. of the IEEE  Conf. on
                     Computer Vision and Pattern Recognition. 2015. 5197−5206.


                              丁玲(1994-),女,讲师,主要研究领域为机                      张健(1990-),男,博士,讲师,CCF 专业会
                              器学习,数据挖掘.                                    员,主要研究领域为机器学习,模式识别.




                              丁世飞(1963-),男,博士,教授,博士生导                      张子晨(1992-),男,博士生,主要研究领域
                              师,CCF 杰出会员,主要研究领域为智能信                        为机器学习,模式识别.
                              息处理,人工智能与模式识别,机器学习,
                              数据挖掘,粗糙集,软计算,大数据分析,云
                              计算.
   337   338   339   340   341   342   343   344