Page 248 - 《软件学报》2021年第11期
P. 248

3574                               Journal of Software  软件学报 Vol.32, No.11, November 2021
















                                                Fig.13   Performance comparison
                                                      图 13   性能对比
                 6    总结与展望

                    本文解决了云存储环境下对所有数据分配统一阈值进行重复数据删除的问题,提出了一种基于阈值动态
                 调整的重复数据删除方案.提出了理想阈值的概念,并将项目反应理论应用到重复数据删除领域中.通过上传用
                 户对数据隐私程度的反馈,动态调整其隐私分数,由此计算并调整重复数据删除操作的阈值.该方案可以使隐私
                 程度较低的数据更快地达到重复数据删除的条件,而使隐私程度较高的数据得到更好的保护.借助椭圆曲线的
                 重复数据删除方案,对上传数据进行加密处理,保证了数据信息安全.实验结果表明,与其他方案相比,本方案在
                 提升重复数据删除操作安全性的同时,并未造成额外的时间开销,具有较高的实用性.
                    在确保数据安全性的同时,如何提高重复数据删除效率,是下一步需要研究的问题.

                 References:
                 [1]    Stanek J, Kencl L. Enhanced  secure  thresholded  data  deduplication  scheme for cloud  storage.  IEEE Trans.  on Dependable and
                     Secure Computing, 2018,15(4):694−707.
                 [2]    Yuan J,  Yu S. Secure  and  constant  cost public  cloud  storage  auditing with deduplication. In: Proc. of the 2013 IEEE Conf. on
                     Communications and Network Security (CNS). IEEE, 2013.
                 [3]    Fu YJ, Xiao N, Liu  F. Research and  development  on key  techniques  of data  deduplication.  Journal  of Computer Research and
                     Development, 2012,49(1):12−20 (in Chinese with English abstract).
                 [4]    Fan Y, Lin X, Liang W, Tan G, Anda P. A secure privacy preserving deduplication scheme for cloud computing. Future Generation
                     Computer Systems, 2019,101:127−135.
                 [5]    Hou H, Yu J, Hao R. Cloud storage auditing with deduplication supporting different security levels according to data popularity.
                     Journal of Network and Computer Applications, 2019,134:26−39.
                 [6]    Jayapandian N, Rahman  AMJMZ. Secure  deduplication  for cloud  storage  using interactive message-locked encryption  with
                     convergent encryption, to reduce storage space. Brazilian Archives of Biology and Technology, 2018,61:e17160609.
                 [7]    Baracaldo N, Androulaki E, Glider J, Sorniotti A. Reconciling end-to-end confidentiality and data reduction in cloud storage. In:
                     Proc. of the 6th ACM Workshop on Cloud Computing Security (CCSW 2014). ACM, 2014. 21−32.
                 [8]    Cui H, Deng RH, Li Y, Wu G. Attribute-based storage supporting secure deduplication of encrypted data in cloud. IEEE Trans. on
                     Big Data, 2019,5(3):330−342.
                 [9]    Douceur JR, Adya A, Bolosky WJ, et al. Reclaiming space from duplicate files in a serverless distributed file system. In: Proc. of
                     the 22nd Int’l Conf. on Distributed Computing Systems. IEEE, 2002. 617−624.
                [10]    Xu J, Chang EC, Zhou J. Weak leakage-resilient client-side deduplication of encrypted data in cloud storage. In: Proc. of the 8th
                     ACM SIGSAC Symp. on Information, Computer and Communications Security. ACM, 2013. 195−206.
                [11]    Tang H, Cui Y, Guan C, Wu J, Wen J, Ren K. Enabling ciphertext deduplication for secure cloud storage and access control. In:
                     Proc. of the 11th ACM on Asia Conf. on Computer and Communications Security. ACM, 2016. 59−70.
                [12]    Yang C, Ji  Q, Xiong SC,  Liu  MZ, Ma JF, Jiang  Q,  Bai  L.  New  method for file deduplication in  cloud storage. Journal on
                     Communications, 2017,38(3):25−33 (in Chinese with English abstract).
   243   244   245   246   247   248   249   250   251   252   253