Page 292 - 《软件学报》2021年第10期
P. 292

3264                                 Journal of Software  软件学报 Vol.32, No.10, October 2021

                 [7]    Xia JM, Li  C,  Tan L,  et  al.  Improved  random  forest classifier  network intrusion  detection method. Computer Engineering and
                     Design, 2019(8):21462150 (in Chinese with English abstract). [doi: 10.16208/j.issn1000-7024.2019.08.009]
                 [8]    Garcia S,  Derrac J,  Triguero I,  et  al.  Evolutionary-based selection of generalized instances for  imbalanced  classification.
                     Knowledge-based Systems, 2012,25(1):312. [doi: 10.1016/j.knosys.2011.01.012]
                 [9]    Sun  Z, Song Q,  Zhu X,  et  al. A novel ensemble method  for classifying  imbalanced  data.  Pattern Recognition,  2015,48(5):
                     16231637. [doi: 10.1016/j.patcog.2014.11.014]
                [10]    Zhang Z, Krawczyk B, Garcìa S, et al. Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced
                     data. Elsevier Science Publishers B. V. 2016. [doi: 10.1016/j.knosys.2016.05.048]
                [11]    Sain H, Purnami SW. Combine sampling support vector machine for imbalanced data classification. Procedia Computer Science,
                     2015,72(Complete):5966. [doi: 10.1016/j.procs.2015.12.105]
                [12]    Jian C, Gao J, Ao Y. A new sampling method for classifying imbalanced data based on support vector machine ensemble. Elsevier
                     Science Publishers B. V., 2016. [doi: 10.1016/j.neucom.2016.02.006]
                [13]    Chawla NV, Lazarevic A, Hall LO, et al. SMOTEBoost: Improving prediction of the minority class in boosting. Lecture Notes in
                     Computer Science, 2003,2838:107119. [doi: 10.1007/978-3-540-39804-2_12]
                [14]    Gaddam SR, Phoha VV, Balagani KS. K-Means+ID3:  A novel  method for supervised  anomaly detection by  cascading K-means
                     clustering and ID3 decision tree learning methods. IEEE Trans. on Knowledge and Data Engineering, 2007,19(3):345354.
                [15]    Muda Z, Yassin W, Sulaiman MN, et al. A K-means and Naive Bayes learning approach for better intrusion detection. Information
                     Technology Journal, 2011,10(3):648655.
                [16]    Khammassi C, Krichen S. A GA-LR wrapper approach for feature selection in network intrusion detection. Computers & Security,
                     2017,70:255277. [doi: 10.1016/j.cose.2017.06.005]
                [17]    Aburomman AA, Reaz MBI. A novel SVM-KNN-PSO ensemble method for intrusion detection system. Applied Soft Computing,
                     2016,38:360372.
                [18]    Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning,
                     2002,46(1-3):389422. [doi: 10.1023/a:1012487302797]
                [19]    Friedman JH. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 2001,29(5):11891232. [doi:
                     10.2307/2699986]
                [20]    He X, Bowers  S, Candela  JQ,  et  al. Practical lessons  from predicting  clicks on  ADS  at Facebook. In: Proc.  of the 20th  ACM
                     SIGKDD Conf. on Knowledge Discovery and Data Mining (ADKDD 2014); the 8th Int’l Workshop on Data Mining for Online
                     Advertising. New York: ACM, 2014. 19. [doi: 10.1145/2648584.2648589]
                [21]    Moustafa N, Slay J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data
                     set). In: Proc. of  the  Military Communications  and Information Systems  Conf. (MilCIS 2015). IEEE, 2015. 16. [doi: 10.1109/
                     MilCIS.2015.7348942]
                [22]    Swami A, Jain R. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2012,12(10):28252830.
                [23]    Cai  HM,  Wang  QX.  Research on intrusion detection technology based on deep learning. Network Security  Technology  &
                     Application, 2017(11):6264 (in Chinese with English abstract).
                [24]    Ma C. Parallel network intrusion detection method based on ReliefF and improved crow search optimization. Application Research
                     of Computer, 2019(10):30633068 (in Chinese with English abstract). http://kns.cnki.net/kcms/detail/51.1196.TP.20180811.1341.
                     098.html

                 附中文参考文献:
                  [5]  谢潇雨.基于卷积神经网络的入侵检测模型研究[硕士学位论文].南京:南京邮电大学.2019. [doi: 10.27251/d.cnki.gnjdc.2019.
                     000590]
                  [6]  池亚平,杨垠坦,李格菲,等.基于 GR-CNN 算法的网络入侵检测模型设计与实现.计算机应用与软件,2019(12):297302.
                  [7]  夏景明,李冲,谈玲,等.改进的随机森林分类器网络入侵检测方法.计算机工程与设计,2019(8):21462150. [doi:  10.16208/j.
                     issn1000-7024.2019.08.009]
                 [23]  蔡洪民,王庆香.基于深度学习的入侵检测技术研究.网络安全技术与应用,2017(11):6264.
   287   288   289   290   291   292   293   294   295   296   297