Page 292 - 《软件学报》2021年第10期
P. 292
3264 Journal of Software 软件学报 Vol.32, No.10, October 2021
[7] Xia JM, Li C, Tan L, et al. Improved random forest classifier network intrusion detection method. Computer Engineering and
Design, 2019(8):21462150 (in Chinese with English abstract). [doi: 10.16208/j.issn1000-7024.2019.08.009]
[8] Garcia S, Derrac J, Triguero I, et al. Evolutionary-based selection of generalized instances for imbalanced classification.
Knowledge-based Systems, 2012,25(1):312. [doi: 10.1016/j.knosys.2011.01.012]
[9] Sun Z, Song Q, Zhu X, et al. A novel ensemble method for classifying imbalanced data. Pattern Recognition, 2015,48(5):
16231637. [doi: 10.1016/j.patcog.2014.11.014]
[10] Zhang Z, Krawczyk B, Garcìa S, et al. Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced
data. Elsevier Science Publishers B. V. 2016. [doi: 10.1016/j.knosys.2016.05.048]
[11] Sain H, Purnami SW. Combine sampling support vector machine for imbalanced data classification. Procedia Computer Science,
2015,72(Complete):5966. [doi: 10.1016/j.procs.2015.12.105]
[12] Jian C, Gao J, Ao Y. A new sampling method for classifying imbalanced data based on support vector machine ensemble. Elsevier
Science Publishers B. V., 2016. [doi: 10.1016/j.neucom.2016.02.006]
[13] Chawla NV, Lazarevic A, Hall LO, et al. SMOTEBoost: Improving prediction of the minority class in boosting. Lecture Notes in
Computer Science, 2003,2838:107119. [doi: 10.1007/978-3-540-39804-2_12]
[14] Gaddam SR, Phoha VV, Balagani KS. K-Means+ID3: A novel method for supervised anomaly detection by cascading K-means
clustering and ID3 decision tree learning methods. IEEE Trans. on Knowledge and Data Engineering, 2007,19(3):345354.
[15] Muda Z, Yassin W, Sulaiman MN, et al. A K-means and Naive Bayes learning approach for better intrusion detection. Information
Technology Journal, 2011,10(3):648655.
[16] Khammassi C, Krichen S. A GA-LR wrapper approach for feature selection in network intrusion detection. Computers & Security,
2017,70:255277. [doi: 10.1016/j.cose.2017.06.005]
[17] Aburomman AA, Reaz MBI. A novel SVM-KNN-PSO ensemble method for intrusion detection system. Applied Soft Computing,
2016,38:360372.
[18] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning,
2002,46(1-3):389422. [doi: 10.1023/a:1012487302797]
[19] Friedman JH. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 2001,29(5):11891232. [doi:
10.2307/2699986]
[20] He X, Bowers S, Candela JQ, et al. Practical lessons from predicting clicks on ADS at Facebook. In: Proc. of the 20th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining (ADKDD 2014); the 8th Int’l Workshop on Data Mining for Online
Advertising. New York: ACM, 2014. 19. [doi: 10.1145/2648584.2648589]
[21] Moustafa N, Slay J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data
set). In: Proc. of the Military Communications and Information Systems Conf. (MilCIS 2015). IEEE, 2015. 16. [doi: 10.1109/
MilCIS.2015.7348942]
[22] Swami A, Jain R. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2012,12(10):28252830.
[23] Cai HM, Wang QX. Research on intrusion detection technology based on deep learning. Network Security Technology &
Application, 2017(11):6264 (in Chinese with English abstract).
[24] Ma C. Parallel network intrusion detection method based on ReliefF and improved crow search optimization. Application Research
of Computer, 2019(10):30633068 (in Chinese with English abstract). http://kns.cnki.net/kcms/detail/51.1196.TP.20180811.1341.
098.html
附中文参考文献:
[5] 谢潇雨.基于卷积神经网络的入侵检测模型研究[硕士学位论文].南京:南京邮电大学.2019. [doi: 10.27251/d.cnki.gnjdc.2019.
000590]
[6] 池亚平,杨垠坦,李格菲,等.基于 GR-CNN 算法的网络入侵检测模型设计与实现.计算机应用与软件,2019(12):297302.
[7] 夏景明,李冲,谈玲,等.改进的随机森林分类器网络入侵检测方法.计算机工程与设计,2019(8):21462150. [doi: 10.16208/j.
issn1000-7024.2019.08.009]
[23] 蔡洪民,王庆香.基于深度学习的入侵检测技术研究.网络安全技术与应用,2017(11):6264.