Page 351 - 《软件学报》2021年第9期
P. 351
刘嘉琦 等:一种基于两级缓存的协同缓存机制 2975
案有大幅提升,即使与以高命中率为优势的哈希缓存策略相比,在缓存空间有限的情况下,CSTC 最高可将命中
率提升 45.4%;同时,CSTC 有效降低了用户请求的响应时间,多数情况下,平均请求响应往返跳数优于现有主要
的 5 种缓存策略.内容热度的统计方法是影响 CSTC 的关键因素之一,下一步工作将充分考虑内容请求热度的地
域与时域性分布特征,考虑真实网络中内容热度随时间的动态变化,进一步研究内容热度的动态感知方法,以优
化 CSTC 的缓存性能.
References:
[1] Wang XW, Li J, Tan ZH, et al. The state of art and future tendency of “Internet+” oriented network technology. Journal of
Computer Research and Development, 2016,53(4):729−741 (in Chinese with English abstract).
[2] Zhang G, Li Y, Lin T. Caching in information centric networking: A survey. Computer Networks, 2013,57(16):3128−3141.
[3] Xylomenos G, Ververidis CN, Siris VA, et al. A survey of information-centric networking research. IEEE Communications
Surveys & Tutorials, 2014,16(2):1024−1049.
[4] Wang Y, Li Z, Tyson G, et al. Design and evaluation of the optimal cache allocation for content-centric networking. IEEE Trans.
on Computers, 2016,65(1):95−107.
[5] Psaras I, Chai WK, Pavlou G. Probabilistic in-network caching for information-centric networks. In: Proc. of the 2nd ICN
Workshop on Information-centric Networking. New York: ACM, 2012. 55−60.
[6] Dabirmoghaddam A, Barijough MM, Garcia-Luna-Aceves JJ. Understanding optimal caching and opportunistic caching at “the
edge” of information-centric networks. In: Proc. of the 1st Int’l Conf. New York: ACM, 2014. 47−56.
[7] Rossi D, Rossini G. On sizing CCN content stores by exploiting topological information. In: Proc. of the 2012 IEEE Conf. on
Computer Communications Workshops (INFOCOM WKSHPS). Piscataway: IEEE, 2012. 280−285.
[8] Li Y, Xie H, Wen Y, et al. How much to coordinate? Optimizing in-network caching in content-centric networks. IEEE Trans. on
Network & Service Management, 2015,12(3):420−434.
[9] Gill AS, D’Acunto L, Trichias K, et al. BidCache: Auction-based in-network caching in ICN. In: Proc. of the 2016 IEEE Globecom
Workshops (GC Wkshps). Piscataway: IEEE, 2016. 1−6.
[10] Breslau L, Cao P, Fan L, et al. Web caching and Zipf-like distributions: Evidence and implications. In: Proc. of the 18th Annual
Joint Conf. of the IEEE Computer and Communications Societies (INFOCOM’99). Piscataway: IEEE, 1999. 126−134.
[11] Zhang M, Luo H, Zhang H. A survey of caching mechanisms in information-centric networking. IEEE Communications Surveys &
Tutorials, 2015,17(3):1473−1499.
[12] Jacobson V, Smetters DK, Thornton JD, et al. Networking named content. In: Proc. of the 5th Int’l Conf. on Emerging Networking
Experiments and Technologies. New York: ACM, 2009. 1−12.
[13] Xu A, Tan X, Tian Y. Design and evaluation of a utility-based caching mechanism for information-centric networks. In: Proc. of
the 2015 IEEE Int’l Conf. on Communications (ICC). Piscataway: IEEE, 2015. 5535−5540.
[14] Ren J, Qi W, Westphal C, et al. Magic: A distributed max-gain in-network caching strategy in information-centric networks. In:
Proc. of the 2014 IEEE Conf. on Computer Communications Workshops (INFOCOM WKSHPS). Piscataway: IEEE, 2014.
470−475.
[15] Thar K, Oo TZ, Pham C, et al. Efficient forwarding and popularity based caching for content centric network. In: Proc. of the 2015
Int’l Conf. on Information Networking (ICOIN). Piscataway: IEEE, 2015. 330−335.
[16] Saino L, Psaras I, Pavlou G. Hash-routing schemes for information centric networking. In: Proc. of the 3rd ACM SIGCOMM
Workshop on Information-centric Networking. New York: ACM, 2013. 27−32.
[17] Sourlas V, Psaras I, Saino L, et al. Efficient Hash-routing and domain clustering techniques for information-centric networks.
Computer Networks, 2016,103:67−83.
[18] Wang S, Bi J, Wu J, et al. CPHR: In-network caching for information-centric networking with partitioning and Hash-routing. IEEE/
ACM Trans. on Networking, 2016,24(5):2742−2755.
[19] Li W, Li Y, Wang W, et al. A collaborative caching scheme with network clustering and Hash-routing in CCN. In: Proc. of the
2016 IEEE 27th Annual Int’l Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC). Piscataway: IEEE, 2016.
1−7.