Page 260 - 《软件学报》2021年第9期
P. 260

2884                                 Journal of Software  软件学报 Vol.32, No.9,  September 2021

         6    结束语

             本文研究无线可充电传感器网络的高效数据收集以及减少网络整体能量消耗的问题,提出了一种三步法
         的移动数据采集与无线充电策略.首先针对网络分区,本文提出了一种基于传感器节点邻域相似度和节点聚类
         的网络分区方案 NP-NSD,将整个传感网络划分为多个区域.区域内部的物理链路较为密集且集中,而区域之间
         的链路连接较为稀疏,断开区域之间的连接几乎不影响传感器节点数据的传输.其次,本文提出了一种基于传感
         器节点社交性和能量的锚点选择方案 AS-SE,与其他锚点选择方案相比,该方案具有明显的性能优势.接着定义
         最小化网络能量消耗问题,通过对偶分解和次梯度的方法逐次求出优化函数的最优传感器节点数据感知率和
         网络链路传输率.最后,在给定网络能量阈值的情况下,本文通过对比基站收集的数据量验证了本文整体策略的
         性能较优.
             本文针对 WRSN 中高效数据收集及网络整体能量消耗优化展开了研究,下一步工作将考虑多功能移动小
         车对网络性能的影响,即小车同时具备能量补给和数据收集功能,研究多功能小车的移动路径以及不同场景下
         与单功能小车的性能比较.

         References:
          [1]    Yang YY, Wang C. Wireless Rechargeable Sensor Networks. Springer Int’l Publishing, 2015. [doi: 10.1007/978-3-319-17656-7]
          [2]    Wang C, Li J, Yang YY, Ye F. A hybrid framework combining solar energy harvesting and wireless charging for wireless sensor
             networks. In: Proc. of the IEEE INFOCOM. IEEE, 2016. 1−9. [doi: 10.1109/INFOCOM.2016.7524337]
          [3]    Lin C, Wang ZY, Han D, Wu YK, Yu CW, Wu GW. TADP: Enabling temporal and distantial priority scheduling for on-demand
             charging architecture in wireless rechargeable sensor Networks. Journal of Systems Architecture, 2016,70:26−38. [doi: 10.1016/
             j.sysarc.2016.04.005]
          [4]    Shu YC, Yousefi H, Cheng P, Chen JM, Gu Y, He T, Kang GS. Near-optimal velocity control for mobile charging in wireless
             rechargeable sensor networks. IEEE Trans. on Mobile Computing, 2016,15(7):1699−1713. [doi: 10.1109/TMC.2015.2473163]
          [5]    Xie LG, Shi Y, Hou Y T, Lou YJ, Sherali HD, Midkiff SF. Bundling mobile base station and wireless energy transfer: Modeling
             and optimization. In: Proc. of the IEEE INFOCOM. IEEE, 2013. 1636−1644.
          [6]    Chidamber SR, Kemerer CF. A  metrics suite  for object oriented design. IEEE Trans. on Software  Engineering, 1994,20(6):
             476−493. [doi: 10.1109/INFCOM.2013.6566960]
          [7]    Abdul-Salaam G, Abdullah  AH, Anisi  MH, Gani  A,  Alelaiwi A. A comparative analysis  of  energy conservation  approaches  in
             hybrid  wireless sensor networks data  collection protocols.  Telecommunications Systems,  2016,61(1):159−179. [doi:  10.1007/
             s11235-015-0092-8]
          [8]    Narendra K, Varun V, Raghunandan GH. A comparative analysis of energy-efficient routing protocols in wireless sensor networks.
             Emerging Research in Electronics, Computer Science and Technology, 2014,248:399−405. [doi: 10.1007/978-81-322-1157-0_40]
          [9]    Yuan F, Zhan YJ, Wang YH. Data density correlation degree clustering method for data aggregation in WSN. IEEE Sensors Journal,
             2014,14(4):1089−1098. [doi: 10.1109/JSEN.2013.2293093]
         [10]    Du PF, Yang QH, Shen Z, Kwak KS. Quality of information maximization in lifetime-constrained wireless sensor networks. IEEE
             Sensors Journal, 2016,16(19):7278−7286. [doi: 10.1109/JSEN.2016.2597439]
         [11]    He L, Pan JP, Xu JD. A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements.
             IEEE Educational Activities Department, 2013,12(7):1308−1320. [doi: 10.1109/TMC.2012.105]
         [12]    Zhao M, Yang YY. Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Trans. on Computers, 2011,61(2):
             265−277. [doi: 10.1109/tc.2010.219]
         [13]    Zhang XW, Dai HP, Xu LJ, Chen GH. Mobility-assisted data gathering strategies in WSNs. Ruan Jian Xue Bao/Journal of Software,
             2013,24(2):198−214 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4349.htm [doi: 10.3724/SP.J.1001.2013.
             04349]
         [14]    Wang  C,  Li J,  Ye F, Yang  YY.  A  mobile data gathering framework for  wireless rechargeable sensor networks  with vehicle
             movement costs and capacity constraints. IEEE Trans. on Computers, 2016,65(8):2411−2427. [doi: 10.1109/tc.2015.2490060]
   255   256   257   258   259   260   261   262   263   264   265