Page 16 - 《软件学报》2021年第9期
P. 16

2640                                 Journal of Software  软件学报 Vol.32, No.9,  September 2021

         取定时的可满足临界.通过构造一个特殊随机实验以及使用一阶矩方法,我们得到了该可满足临界值的一个下
         界.随后进行的模拟实验结果,验证了理论证明所得下界的正确性.
             需要说明的是:从模拟实验结果看,本文所得下界仍然比较粗糙,需要进一步改进.此外,研究讨论该可满足
         临界值的上界以确定 SAT-UNSAT 相变点也十分必要.这些工作将为研究参数 d 如何影响公式求解难度以及设
         计随机难解实例生成算法奠定基础.

         References:
          [1]    Levin LA. Universal sequential search problems. Problemy Peredachi Informatsii, 1973,9(3):115−116.
          [2]    Friedgut E, Bourgain J. Sharp thresholds of graph properties, and the k-sat problem. Journal of the American Mathematical Society,
             1999,12(4):1017−1054. [doi: 10.1090/S0894-0347-99-00305-7]
          [3]    Kaporis AC, Kirousis LM, Lalas EG. The  probabilistic analysis  of a greedy  satisfiability algorithm. Random  Structures &
             Algorithms, 2006,28(4):444−480. [doi: 10.1002/rsa.20104]
          [4]    Díaz J, Kirousis  L,  Mitsche D, Pérez-Giménez  X.  On the satisfiability threshold of formulas  with three  literals per  clause.
             Theoretical Computer Science, 2009,410(30-32):2920−2934. [doi: 10.1016/j.tcs.2009.02.020]
          [5]    Lundow PH, Markström K. Revisiting the cavity-method threshold for random 3-SAT. Physical Review E, 2019,99(2):022106(5).
          [6]    Crawford JM, Auton LD. Experimental results on the crossover point in random 3-SAT. Artificial Intelligence, 1996,81(1-2):31−57.
             [doi: 10.1016/0004-3702(95)00046-1]
          [7]    Selman B, Kirkpatrick S. Critical behavior in the computational cost of satisfiability testing. Artificial Intelligence, 1996,81(1-2):
             273−295. [doi: 10.1016/0004-3702(95)00056-9]
          [8]    Monasson R, Zecchina R, Kirkpatrick S, Selman B, Troyansky L. Determining computational complexity from characteristic ‘phase
             transitions’. Nature, 1999,400(6740):133−137. [doi: 10.1038/22055]
          [9]    Braunstein A, Mézard M, Zecchina R. Survey propagation: An algorithm for satisfiability. Random Structures & Algorithms, 2002,
             27(2):201−226. [doi: 10.1002/rsa.20057]
         [10]    Xu  DY, Wang  XF.  A regular NP-complete problem  and  its inapproximability. Journal  of Frontiers of  Computer Science  and
             Technology, 2013,7(8):691−697 (in Chinese with English abstract). [doi: 10.3778/j.issn.1673-9418.1305025]
         [11]    Zhou JC, Xu DY, Lu YJ, Dai CK. Strictly regular random (3,s)-SAT model and its phase transition phenomenon. Journal of Beijing
             University of Aeronautics and Astronautics, 2016,42(12):2563−2571 (in Chinese with English abstract). [doi: 10.13700/j.bh.1001-
             5965.2015.0845]
         [12]    Mahajan YS, Fu ZH, Malik S. Zchaff2004: An efficient SAT solver. In: Hoos HH, Mitchell DG, eds. Theory & Applications of
             Satisfiability Testing. Berlin: Springer-Verlag, 2004. 360−375. [doi: 10.1007/11527695_27]
         [13]    Zhou JC, Xu DY, Lu YJ. Satisfiability threshold of the regular random (k,r)-SAT problem. Ruan Jian Xue Bao/Journal of Software,
             2016,27(12):2985−2993  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/5129.htm  [doi:  10.13328/j.cnki.jos.
             005129]
         [14]    Sumedha, Krishnamurthy S, Sahoo S. Balanced k-satisfiability and biased random k-satisfiability on trees. Physical Review E, 2013,
             87(4):042130(9). [doi: 10.1103/PhysRevE.87.042130]
         [15]    Zhou JC, Xu DY, Lu YJ. Satisfiability threshold of regular (k,r)-SAT problem via 1RSB theory. Journal of Huazhong University of
             Science and Technology  (Natural  Science Edition),  2017,45(12):7−13  (in Chinese with English abstract).  [doi:  10.13245/j.hust.
             171202]
         [16]    Coja-Oghlan A, Wormald N. The number of satisfying assignments of random regular k-SAT formulas. Combinatorics, Probability
             and Computing, 2018,27:496−530. [doi: 10.1017/S0963548318000263]
         [17]    Boufkhad Y, Dubois O,  Interian Y, Selman B. Regular  random  k-SAT:  Properties of balanced formulas. Journal of  Automated
             Reasoning, 2005,35:181−200. [doi: 10.1007/978-1-4020-5571-3_9]
         [18]    Rathi V, Aurell E, Rasmussen L, Skoglund M. Bounds on threshold of regular random k-SAT. In: Strichman O, Szeider S, eds.
             Theory  & Applications of Satisfiability  Testing-SAT 2010.  Berlin: Springer-Verlag, 2010.  264−277. [doi: 10.1007/978-3-642-
             14186-7_22]
   11   12   13   14   15   16   17   18   19   20   21