Page 131 - 《软件学报》2021年第9期
P. 131

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
         Journal of Software,2021,32(9):2755−2768 [doi: 10.13328/j.cnki.jos.005986]   http://www.jos.org.cn
         ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563


                                                             ∗
         面向图像场景转换的改进型生成对抗网络

                              1
               1
                                              2
                       1
                                      1
         肖进胜 ,   周景龙 ,   雷俊锋 ,   李   亮 ,   丁   玲 ,   杜治一  1
         1
          (武汉大学  电子信息学院,湖北  武汉  430072)
         2 (湖北第二师范学院  计算机学院,湖北  武汉  430205)
         通讯作者:  肖进胜, E-mail: xiaojs@whu.edu.cn

         摘   要:  设计了新的生成器网络、判决器网络以及新的损失函数,用于图像场景转换.首先,生成器网络采用了带跨
         层连接结构的深度卷积神经网络,其中,多个跨层连接以实现图像结构信息的共享;而判决器网络采用了多尺度全域
         卷积网络,多尺度判决器可以区分不同尺寸下的真实和生成图像.同时,对于损失函数,该算法借鉴其他算法提出了 4
         种损失函数的组合,并通过实验对比证明了新损失函数的有效性,包括 GAN 损失、L 1 损失、VGG 损失、FM 损失.
         从实验结果显示,该算法能够实现多种转换,且转换后图像的细节保留较为完整,生成图像较为真实,明显消除了块
         效应.
         关键词:  图像生成;深度学习;生成对抗网络;跨层连接;场景转换
         中图法分类号: TP183

         中文引用格式:  肖进胜,周景龙,雷俊锋,李亮,丁玲,杜治一.面向图像场景转换的改进型生成对抗网络.软件学报,2021,32(9):
         2755−2768. http://www.jos.org.cn/1000-9825/5986.htm
         英文引用格式:  Xiao JS, Zhou  JL, Lei  JF, Li L, Ding L, Du ZY. Improved generative adversarial  network  for image  scene
         transformation. Ruan Jian Xue Bao/Journal of Software, 2021,32(9):2755−2768 (in Chinese). http://www.jos.org.cn/1000-9825/
         5986.htm
         Improved Generative Adversarial Network for Image Scene Transformation

                                      1
                      1
                                                             1
                                                                        2
                                                   1
         XIAO Jin-Sheng ,   ZHOU Jing-Long ,  LEI Jun-Feng ,   LI Liang ,  DING Ling ,  DU Zhi-Yi 1
         1
          (Electronic Information School, Wuhan University, Wuhan 430072, China)
         2
          (College of Computer, Hubei University of Education, Wuhan 430205, China)
         Abstract:   This study designs  a new generator network,  a new discriminator network,  and  a new loss function for image scene
         conversion. First, the generator network uses a deep convolutional neural network with a skip connection structure, in which multi-skip
         connection is used to share the structure information of the image.  For the discriminator network, it uses  a  multi-scale  global
         convolutional network which can distinguish between real and generated images of different sizes. At the same time, the new loss function
         is a combination of four loss functions referring to other algorithms, including GAN loss, L 1 loss, VGG loss, and feature matching loss.
         Moreover, the validity of the new loss function is demonstrated through experimental comparisons. The experimental results show that the
         proposed algorithm can achieve multi-image transformations, and the details of generated images are preserved completely, the generated
         image is more realistic, and the block effect is obviously eliminated.
         Key words:    image generation; deep learning; generative adversarial networks; skip connection; scene conversion


             许多计算机视觉问题可以被看作是一个图像到图像的翻译问题,是映射一个域中的映像到另一个域中的
         对应映像,实际上都是像素到像素之间的映射.例如:超分辨率可以认为是将低分辨率图像映射到相应的高分辨

            ∗  基金项目:  国家重点研发计划(2017YFB1302401);  国家自然科学基金(61471272)
             Foundation item: National Key Research and Development  Program of China  (2017YFB1302401); National Natural  Science
         Foundation of China (61471272)
              收稿时间: 2019-07-19;  修改时间: 2019-09-03, 2019-10-21;  采用时间: 2019-11-19
   126   127   128   129   130   131   132   133   134   135   136