Page 296 - 《软件学报》2021年第8期
P. 296
2578 Journal of Software 软件学报 Vol.32, No.8, August 2021
[13] Chen GJ, Wiener JL, Iyer S, Jaiswal A, Lei R, Simha N, Wang W, Wilfong K, Williamson T, Yilmaz S. Realtime data processing at
Facebook. In: Proc. of the ACM Conf. on Management of Data. New York: ACM, 2016. 1087−1098. [doi: 10.1145/2882903.
2904441]
[14] Xhafa F, Naranjo V, Caballe S. Processing and analytics of big data Streams with Yahoo!S4. In: Proc. of the IEEE Conf. on
Advanced Information Networking & Applications. Piscataway: IEEE Computer Society, 2015. 263−270. [doi: 10.1109/AINA.
2015.194]
[15] Tian XH, Han R, Wang L, Lu G, Zhan JF. Latency critical big data computing in finance. The Journal of Finance and Data Science,
2015,1(1):33−41. [doi: 10.1016/j.jfds.2015.07.002]
[16] Ta VD, Liu CM, Nkabinde GW. Big data stream computing in healthcare real-time analytics. In: Proc. of the IEEE Conf. on Cloud
Computing and Big Data Analysis (ICCCBDA). Piscataway: IEEE, 2016. 37−42. [doi: 10.1109/ICCCBDA.2016.7529531]
[17] Batyuk A, Voityshyn V. Apache Storm based on topology for real-time processing of streaming data from social networks. In: Proc.
of the IEEE Conf. on Data Stream Mining & Processing (DSMP). Piscataway: IEEE, 2016. 345−349. [doi: 10.1109/DSMP.2016.
7583573]
[18] Lu L, Yu J, Bian C, et al. A task migration strategy in big data stream computing with Storm. Journal of Computer Research and
Development, 2018,55(1):71−92 (in Chinese with English abstract).
[19] Zhang M. Intel-Hadoop/Storm-benchmark forked from manuzhang/storm-benchmark. 2015. https://github.com/intel-hadoop/storm-
benchmark
[20] Shabestari F, Rahmani AM, Navimipour NJ, Jabbehdari S. A taxonomy of software-based and hardware-based approaches for
energy efficiency management in the Hadoop. Journal of Network and Computer Applications, 2019,126:162−177. [doi: 10.1016/
j.jnca.2018.11.007]
[21] Zhou S, Chelmis C, Prasanna VK. High-Throughput and energy-efficient graph processing on FPGA. In: Proc. of the IEEE Conf.
on Field-Programmable Custom Computing Machines. Piscataway: IEEE, 2016. 103−110. [doi: 10.1109/FCCM.2016.35]
[22] Jin Z, Finkel H, Yoshii K, Cappello F. Evaluation of a floating-point intensive kernel on FPGA. In: Proc. of the European Conf. on
Parallel Processing. Springer-Verlag, 2017. 664−675. [doi: 10.1007/978-3-319-75178-8_53]
[23] De MT, Mencagli G. Proactive elasticity and energy awareness in data stream processing. Journal of Systems and Software, 2017,
127:302−319. [doi: 10.1016/j.jss.2016.08.037]
[24] Wang ZW, Wang H, Zhao WQ, Cheng LL. Energy optimization of parallel programs in a heterogeneous system by combining
processor core-shutdown and dynamic voltage scaling. Future Generation Computer Systems, 2019,92:198−209. [doi: 10.1016/
j.future.2018.09.039]
[25] Pietri I, Zhuang S, Casas M, Moretó M, Sakellariou R. Evaluating scientific workflow execution on an asymmetric multicore
processor. In: Proc. of the European Conf. on Parallel Processing. Springer-Verlag, 2017. 439−451. [doi: 10.1007/978-3-319-
75178-8_36]
[26] Schneider FP, Wienke S, Müller MS. Operational concepts of GPU systems in HPC centers: TCO and productivity. In: Proc. of the
European Conf. on Parallel Processing. Springer-Verlag, 2017. 452−464. [doi: 10.1007/978-3-319-75178-8_37]
[27] Campeanu G, Saadatmand M. Run-Time component allocation in CPU-GPU embedded systems. In: Proc. of the ACM Conf. on
Applied Computing. New York: ACM, 2017. 1259−1265. [doi: 10.1145/3019612.3019785]
[28] Lang J, Rünger G. An execution time and energy model for an energy-aware execution of a conjugate gradient method with
CPU/GPU collaboration. Journal of Parallel and Distributed Computing, 2014,74(9):2884−2897. [doi: 10.1016/j.jpdc.2014.06.001]
[29] Liao B, Yu J, Zhang T, Guo BL, Sun H, Ying CT. Energy-Efficient algorithms for distributed storage system based on block
storage structure reconfiguration. Journal of Network and Computer Applications, 2015,48:71−86. [doi: 10.1016/j.jnca.2014.
10.008]
[30] Liao B, Zhang T, Yu J, et al. Energy consumption modeling and optimization analysis for MapReduce. Journal of Computer
Research and Development, 2016,53(9):2107−2131 (in Chinese with English abstract).
[31] Cordeschi N, Shojafar M, Amendola D, Baccarelli E. Energy-saving QoS resource management of virtualized networked data
centers for big data stream computing. In: Proc. of the Emerging Research in Cloud Distributed Computing Systems. Hershey: IGI
Global, 2015. 1−31. [doi: 10.4018/978-1-4666-8213-9.ch004]
[32] Dayarathna M, Li Y, Wen Y, Fan R. Energy consumption analysis of data stream processing: A benchmarking approach. Software:
Practice and Experience, 2017,47(10):1443−1462. [doi: 10.1002/spe.2458]