Page 296 - 《软件学报》2021年第8期
P. 296

2578                                   Journal of Software  软件学报 Vol.32, No.8,  August 2021

                [13]    Chen GJ, Wiener JL, Iyer S, Jaiswal A, Lei R, Simha N, Wang W, Wilfong K, Williamson T, Yilmaz S. Realtime data processing at
                     Facebook. In: Proc. of the  ACM  Conf. on Management of  Data.  New  York:  ACM, 2016. 1087−1098. [doi: 10.1145/2882903.
                     2904441]
                [14]    Xhafa F,  Naranjo  V,  Caballe S. Processing  and  analytics of big data Streams  with Yahoo!S4. In: Proc. of the IEEE  Conf. on
                     Advanced  Information Networking & Applications.  Piscataway:  IEEE Computer  Society, 2015.  263−270. [doi: 10.1109/AINA.
                     2015.194]
                [15]    Tian XH, Han R, Wang L, Lu G, Zhan JF. Latency critical big data computing in finance. The Journal of Finance and Data Science,
                     2015,1(1):33−41. [doi: 10.1016/j.jfds.2015.07.002]
                [16]    Ta VD, Liu CM, Nkabinde GW. Big data stream computing in healthcare real-time analytics. In: Proc. of the IEEE Conf. on Cloud
                     Computing and Big Data Analysis (ICCCBDA). Piscataway: IEEE, 2016. 37−42. [doi: 10.1109/ICCCBDA.2016.7529531]
                [17]    Batyuk A, Voityshyn V. Apache Storm based on topology for real-time processing of streaming data from social networks. In: Proc.
                     of the IEEE Conf. on Data Stream Mining & Processing (DSMP). Piscataway: IEEE, 2016. 345−349. [doi: 10.1109/DSMP.2016.
                     7583573]
                [18]    Lu L, Yu J, Bian C, et al. A task migration strategy in big data stream computing with Storm. Journal of Computer Research and
                     Development, 2018,55(1):71−92 (in Chinese with English abstract).
                [19]    Zhang M. Intel-Hadoop/Storm-benchmark forked from manuzhang/storm-benchmark. 2015. https://github.com/intel-hadoop/storm-
                     benchmark
                [20]    Shabestari F,  Rahmani  AM, Navimipour NJ,  Jabbehdari S.  A taxonomy  of software-based  and hardware-based approaches for
                     energy efficiency management in the Hadoop. Journal of Network and Computer Applications, 2019,126:162−177. [doi: 10.1016/
                     j.jnca.2018.11.007]
                [21]    Zhou S, Chelmis C, Prasanna VK. High-Throughput and energy-efficient graph processing on FPGA. In: Proc. of the IEEE Conf.
                     on Field-Programmable Custom Computing Machines. Piscataway: IEEE, 2016. 103−110. [doi: 10.1109/FCCM.2016.35]
                [22]    Jin Z, Finkel H, Yoshii K, Cappello F. Evaluation of a floating-point intensive kernel on FPGA. In: Proc. of the European Conf. on
                     Parallel Processing. Springer-Verlag, 2017. 664−675. [doi: 10.1007/978-3-319-75178-8_53]
                [23]    De MT, Mencagli G. Proactive elasticity and energy awareness in data stream processing. Journal of Systems and Software, 2017,
                     127:302−319. [doi: 10.1016/j.jss.2016.08.037]
                [24]    Wang ZW,  Wang H, Zhao WQ, Cheng LL. Energy optimization  of  parallel  programs in a  heterogeneous system by combining
                     processor core-shutdown and  dynamic  voltage  scaling. Future Generation Computer  Systems,  2019,92:198−209. [doi: 10.1016/
                     j.future.2018.09.039]
                [25]    Pietri  I, Zhuang  S, Casas M, Moretó  M,  Sakellariou R. Evaluating  scientific workflow execution on an asymmetric multicore
                     processor. In: Proc. of the  European Conf. on Parallel Processing. Springer-Verlag, 2017. 439−451. [doi:  10.1007/978-3-319-
                     75178-8_36]
                [26]    Schneider FP, Wienke S, Müller MS. Operational concepts of GPU systems in HPC centers: TCO and productivity. In: Proc. of the
                     European Conf. on Parallel Processing. Springer-Verlag, 2017. 452−464. [doi: 10.1007/978-3-319-75178-8_37]
                [27]    Campeanu G, Saadatmand M. Run-Time component allocation in CPU-GPU embedded systems. In: Proc. of the ACM Conf. on
                     Applied Computing. New York: ACM, 2017. 1259−1265. [doi: 10.1145/3019612.3019785]
                [28]    Lang  J, Rünger G. An execution time and energy model for an energy-aware execution  of a conjugate gradient method with
                     CPU/GPU collaboration. Journal of Parallel and Distributed Computing, 2014,74(9):2884−2897. [doi: 10.1016/j.jpdc.2014.06.001]
                [29]    Liao B, Yu J,  Zhang T, Guo  BL, Sun H, Ying  CT.  Energy-Efficient  algorithms for distributed storage system based on block
                     storage structure  reconfiguration. Journal of Network  and  Computer Applications, 2015,48:71−86. [doi: 10.1016/j.jnca.2014.
                     10.008]
                [30]    Liao B, Zhang T,  Yu  J,  et al. Energy consumption modeling and  optimization analysis  for  MapReduce. Journal  of  Computer
                     Research and Development, 2016,53(9):2107−2131 (in Chinese with English abstract).
                [31]    Cordeschi N,  Shojafar M, Amendola D, Baccarelli E. Energy-saving QoS  resource management  of  virtualized  networked  data
                     centers for big data stream computing. In: Proc. of the Emerging Research in Cloud Distributed Computing Systems. Hershey: IGI
                     Global, 2015. 1−31. [doi: 10.4018/978-1-4666-8213-9.ch004]
                [32]    Dayarathna M, Li Y, Wen Y, Fan R. Energy consumption analysis of data stream processing: A benchmarking approach. Software:
                     Practice and Experience, 2017,47(10):1443−1462. [doi: 10.1002/spe.2458]
   291   292   293   294   295   296   297   298   299   300   301