Page 262 - 《软件学报》2021年第8期
P. 262

2544                                   Journal of Software  软件学报 Vol.32, No.8,  August 2021

                 [99]    Ren M, Kiros R, Zemel R. Image question answering: A visual semantic embedding model and a new dataset. arXiv preprint
                      arXiv:1505.02074, 2015.
                 [100]    Antol S, Agrawal A, Lu J, Antol S, Mitchell M, Zitnick L, Batra D, Parikh D. VQA: Visual question answering. In: Proc. of the
                      IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 2425−2433.
                 [101]    Huk Park D, Anne Hendricks L, Akata Z, Rohrbach A, Schiele B, Darrell T, Rohrbach M. Multimodal explanations: Justifying
                      decisions  and pointing to the  evidence. In: Proc. of  the IEEE  Conf. on Computer  Vision and Pattern  Recognition. 2018.
                      8779−8788. [doi: 10.1109/CVPR.2018.00915]
                 [102]    Johnson J, Hariharan B, van der Maaten L, Li F, Zitnick CL, Girshick R. Clevr: A diagnostic dataset for compositional language
                      and elementary visual reasoning. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 2901−2910. [doi:
                      10.1109/CVPR.2017.215]
                 [103]    Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollar P. Microsoft coco:
                      Common objects in context. In: Proc. of the European Conf. on Computer Vision (ECCV). 2014. 740−755.
                 [104]    Borisyuk F, Gordo A, Sivakumar V. Rosetta: Large scale system for text detection and recognition in images. In: Proc. of the 24th
                      ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. 2018. 71−79.
                 [105]    Chattopadhyay P, Vedantam R, Selvaraju RR, Batra D, Parikh D. Counting everyday objects in everyday scenes. In: Proc. of the
                      IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 1135−1144. [doi: 10.1109/CVPR.2017.471]
                 [106]    Trott  A,  Xiong  C, Socher  R. Interpretable  counting for visual question  answering. In: Proc. of the Int’l  Conf. on  Learning
                      Representations. 2017. 133−138.
                 [107]    Zitnick CL, Agrawal A, Antol  S, Mitchell  M, Batra D,  Parikh D. Measuring machine  intelligence  through  visual  question
                      answering. AI Magazine, 2016,37(1):63−72.
                 [108]    Wu Z, Palmer M. Verb semantics and lexical selection. In: Proc. of the Conf. on Association for Computational Linguistics. 1994.
                 附中文参考文献:
                 [12]  鲜光靖,黄永忠.基于神经网络的视觉问答技术研究综述.网络安全技术与应用,2018(1):42−47.
                 [13]  俞俊,汪亮,余宙.视觉问答技术研究.计算机研究与发展,2018,55(9):1946−1958.



                              包希港(1997-),男,博士生,主要研究领域                      肖克晶(1991-),女,博士生,主要研究领域
                              为视觉问答,知识库问答.                                 为自然语言处理,深度学习,数据挖掘.




                              周春来(1976-),男,博士,副教授,CCF 专                    覃飙(1972-),男,博士,副教授,博士生导
                              业会员,主要研究领域为人工智能不确                            师,CCF 专业会员,主要研究领域为人工智
                              定性.                                          能,因果分析和不确定数据库.
   257   258   259   260   261   262   263   264   265   266   267