Page 155 - 《软件学报》2021年第8期
P. 155

邵明莉  等:面向优先车辆感知的交通灯优化控制方法                                                       2437


                 References:
                 [1]    2018 annual report of traffic operation. 2018 (in Chinese). http://www.jtcx.sh.cn/trafficanalyse.html
                 [2]    Li MW, Li L. Intelligent transportation system in China: The optimal evaluation period of transportation’s application performance.
                     Journal of Intelligent & Fuzzy Systems, 2020,38(6):6979−6990.
                 [3]    Wu LB,  Nie  L, Liu BY, Wu N, Zou YF, Ye LY. An intelligent  traffic signal  control  method in  VANET. Chinese Journal of
                     Computers, 2016,39(6):1105−1119 (in Chinese with English abstract).
                 [4]    Chang W, Roy D, Zhao S, Annaswamy A, Chakraborty S. CPS-oriented modeling and control of traffic signals using adaptive back
                     pressure. In: Proc. of the Design, Automation & Test in Europe Conf. & Exhibition (DATE). IEEE, 2020. 1686−1691.
                 [5]    Zhang ZK, Pang WG, Xie WJ, Lü MS, Wang Y. Deep learning for real-time applications: A survey. Ruan Jian Xue Bao/Journal of
                     Software, 2020,31(9):2654−2677 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5946.htm [doi: 10.13328/j.
                     cnki.jos.005946]
                 [6]    Diakaki P, Kotsialos D, Wang Y. Review of road traffic control strategies. Proc. of the IEEE, 2003,91(12):2041−2042.
                 [7]    Sutton RS, Barto AG. Introduction to Reinforcement Learning. Cambridge: MIT Press, 1998.
                 [8]    Thorpe TL. Vehicle traffic light control using sarsa. 1997. http://citeseer.ist.psu.edu/thorpe97vehicle.html
                 [9]    Xu Y, Zhang YL, Sun TT, Su YF. Agent-based decentralized cooperative traffic control toward green-waved effects. Ruan Jian
                     Xue Bao/Journal of Software, 2012,23(11):2937−2945 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4307.
                     htm [doi: 10.3724/SP.J.1001.2012.04307]
                [10]    Lee J, Chung J, Sohn K. Reinforcement learning for joint control of traffic signals in a transportation network. IEEE Trans. on
                     Vehicular Technology, 2020,69(2):1375−1387.
                [11]    Guo MY,  Wang P, Chan CY,  Askary  S. A  reinforcement  learning approach  for intelligent  traffic  signal control at  urban
                     intersections. In: Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). 2019. 4242−4247.
                [12]    Yu D, Wei SG, Rong DC, Chai LG. RA-TSC: Learning adaptive traffic signal control strategy via deep reinforcement learning. In:
                     Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). 2019. 3275−3280.
                [13]    Rizzo SG, Vantini G, Chawla S.  Reinforcement learning with  explainability  for traffic signal  control. In:  Proc. of the IEEE
                     Intelligent Transportation Systems Conf. (ITSC). 2019. 3567−3572.
                [14]    Cao M, Shuai QQ, Li V. Emergency vehicle-centered traffic signal control in intelligent transportation systems. In: Proc. of the
                     IEEE Intelligent Transportation Systems Conf. (ITSC). 2019. 4525−4531.
                [15]    Wang Z, Schaul T, Hessel M, Hasselt H, Lanctoc M, Freitas N. Dueling network architectures for deep reinforcement learning. In:
                     Proc. of the Int’l Conf. on Machine Learning (ICML). 2016. 1995−2003.
                [16]    Van Hasselt  H,  Guez  A, Silver D.  Deep reinforcement learning with double  Q-learning.  In: Proc. of the 30th  AAAI  Conf. on
                     Artificial Intelligence (AAAI). 2016. 2094−2100.
                [17]    Behrisch M, Bieker L, Erdmann J, Krajzewicz D. Sumo—Simulation of  urban  mobility:  An overview. In: Proc. of the SIMUL.
                     2011. https://elib.dlr.de/71460/
                [18]    Singh T. Constrained Markov decision processes for intelligent traffic. In: Proc. of the Int’l Conf. on Computing, Communication
                     and Networking Technologies (ICCCNT). 2019. 1−7.
                [19]    Wei H, Zheng G, Yao H, Li ZH. Intellilight: A reinforcement learning approach for intelligent traffic light control. In: Proc. of the
                     24th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining (KDD). 2018. 2496−2505.
                [20]    Joo H, Ahmed SH, Lim Y. Traffic signal control for smart cities using reinforcement learning. Computer Communications, 2020,
                     154:324−330.
                [21]    Zang X, Yao H, Zheng GJ, Xu K, Li ZH. MetaLight: Value-based meta-reinforcement learning for traffic signal control. In: Proc.
                     of the AAAI Conf. on Artificial Intelligence (AAAI), Vol.34. 2020. 1153−1160.
                [22]    Yan S, Zhang J, Buescher D, Burgard W. Efficiency and equity are both essential: A generalized traffic signal controller with deep
                     reinforcement learning. arXiv preprint arXiv:2003.04046, 2020.
                [23]    Qin X, Khan AM. Control strategies of traffic signal timing transition for emergency vehicle preemption. Transportation Research
                     Part C: Emerging Technologies, 2012,25:1−17.
   150   151   152   153   154   155   156   157   158   159   160