Page 141 - 《软件学报》2021年第8期
P. 141

杨世贵  等:基于强化学习的温度感知多核任务调度                                                        2423


                 [8]    Chen KCJ, Liao YH. Online machine learning-based temperature prediction for thermal-aware NoC system. In: Proc. of the 2019
                     Int’l SoC Design Conf. (ISOCC). IEEE, 2019. 65−66.
                 [9]    Yang S, Shafik RA, Merrett GV, et al. Adaptive energy minimization of embedded heterogeneous systems using regression-based
                     learning. In: Proc. of the 2015 25th  Int’l  Workshop on Power  and  Timing Modeling, Optimization  and Simulation (PATMOS).
                     IEEE, 2015. 103−110.
                [10]    Donald  J, Martonosi  M. Techniques  for multicore thermal management: Classification and  new exploration. ACM  SIGARCH
                     Computer Architecture News, 2006,34(2):78−88.
                [11]    Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
                [12]    Silver D, Hubert T, Schrittwieser J, et al. Mastering chess and Shogi by self-play with a general reinforcement learning algorithm.
                     arXiv preprint arXiv:1712.01815, 2017.
                [13]    Ukhov I, Bao M, Eles P, et al. Steady-state dynamic temperature analysis and reliability optimization for embedded multiprocessor
                     systems. In: Proc. of the 49th Annual Design Automation Conf. 2012. 197−204.
                [14]    Chung EY, Benini L, De Micheli G. Dynamic power management using adaptive learning tree. In: Proc. of the 1999 IEEE/ACM
                     Int’l Conf. on Computer-Aided Design. IEEE, 1999. 274−279.
                [15]    Jung H, Pedram  M. Supervised learning based power  management for  multicore processors. IEEE  Trans. on  Computer-aided
                     Design of Integrated Circuits and Systems, 2010,29(9):1395−1408.
                [16]    Lee W, Patel K, Pedram  M.  GOP-level dynamic thermal  management in  MPEG-2 decoding. IEEE  Trans. on  Very  Large Scale
                     Integration (VLSI) Systems, 2008,16(6):662−672.
                [17]    Jayaseelan R, Mitra T. Dynamic thermal management via architectural adaptation. In: Proc. of the 2009 46th ACM/IEEE Design
                     Automation Conf. IEEE, 2009. 484−489.
                [18]    Iranfar A, Shahsavani SN, Kamal M, et al. A heuristic machine learning-based algorithm for power and thermal management of
                     heterogeneous  MPSoCs. In: Proc. of the 2015 IEEE/ACM Int’l Symp. on  Low Power  Electronics  and  Design (ISLPED). IEEE,
                     2015. 291−296.
                [19]    Lu S, Tessier R, Burleson W. Reinforcement learning for thermal-aware many-core task allocation. In: Proc. of the 25th Edition on
                     Great Lakes Symp. on VLSI. 2015. 379−384.
                [20]    Das A, Shafik RA, Merrett GV, et al. Reinforcement learning-based inter-and intra-application thermal optimization for lifetime
                     improvement of multicore systems. In: Proc. of the 51st Annual Design Automation Conf. 2014. 1−6.
                [21]    Benini L, Bogliolo A, De Micheli G. A survey of design techniques for system-level dynamic power management. IEEE Trans. on
                     Very Large Scale Integration (VLSI) Systems, 2000,8(3):299−316.
                [22]    Durand S, Lesecq S. Nonlinear and asymmetric thermal-aware DVFS control. In: Proc. of the 2013 European Control Conf. (ECC).
                     IEEE, 2013. 3240−3245.
                [23]    Mnih V, Badia AP, Mirza M, et al. Asynchronous methods for deep reinforcement learning. In: Proc. of the Int’l Conf. on Machine
                     Learning. 2016. 1928−1937.
                [24]    Lillicrap TP, Hunt  JJ,  Pritzel A,  et  al.  Continuous  control  with deep reinforcement learning.  arXiv preprint arXiv:1509.02971,
                     2015.
                [25]    Watkins CJCH , Dayan P. Q-learning. Machine Learning, 1992,8(3-4):279−292.
                [26]    Bienia C, Kumar S, Singh JP, et al. The PARSEC benchmark suite: Characterization and architectural implications. In: Proc. of the
                     17th Int’l Conf. on Parallel Architectures and Compilation Techniques. 2008. 72−81.
                [27]    Pallipadi V, Starikovskiy A. The ondemand governor: Past, present and future. In: Proc. of the Linux Symp., Vol.2. 2006. 223−238.
                [28]    Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint
                     arXiv:1502.03167, 2015.
                [29]    Yeo  I, Liu CC, Kim EJ.  Predictive dynamic  thermal management  for multicore  systems.  In:  Proc.  of the 45th Annual Design
                     Automation Conf. 2008. 734−739.
                [30]    Sutton RS, Barto AG. Reinforcement Learning: An Introduction. MIT Press, 2018.
                [31]    Ishkov N. A complete guide to Linux process scheduling [MS. Thesis]. Tampere: University of Tampere, 2015.
   136   137   138   139   140   141   142   143   144   145   146