Page 141 - 《软件学报》2021年第8期
P. 141
杨世贵 等:基于强化学习的温度感知多核任务调度 2423
[8] Chen KCJ, Liao YH. Online machine learning-based temperature prediction for thermal-aware NoC system. In: Proc. of the 2019
Int’l SoC Design Conf. (ISOCC). IEEE, 2019. 65−66.
[9] Yang S, Shafik RA, Merrett GV, et al. Adaptive energy minimization of embedded heterogeneous systems using regression-based
learning. In: Proc. of the 2015 25th Int’l Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS).
IEEE, 2015. 103−110.
[10] Donald J, Martonosi M. Techniques for multicore thermal management: Classification and new exploration. ACM SIGARCH
Computer Architecture News, 2006,34(2):78−88.
[11] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
[12] Silver D, Hubert T, Schrittwieser J, et al. Mastering chess and Shogi by self-play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017.
[13] Ukhov I, Bao M, Eles P, et al. Steady-state dynamic temperature analysis and reliability optimization for embedded multiprocessor
systems. In: Proc. of the 49th Annual Design Automation Conf. 2012. 197−204.
[14] Chung EY, Benini L, De Micheli G. Dynamic power management using adaptive learning tree. In: Proc. of the 1999 IEEE/ACM
Int’l Conf. on Computer-Aided Design. IEEE, 1999. 274−279.
[15] Jung H, Pedram M. Supervised learning based power management for multicore processors. IEEE Trans. on Computer-aided
Design of Integrated Circuits and Systems, 2010,29(9):1395−1408.
[16] Lee W, Patel K, Pedram M. GOP-level dynamic thermal management in MPEG-2 decoding. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 2008,16(6):662−672.
[17] Jayaseelan R, Mitra T. Dynamic thermal management via architectural adaptation. In: Proc. of the 2009 46th ACM/IEEE Design
Automation Conf. IEEE, 2009. 484−489.
[18] Iranfar A, Shahsavani SN, Kamal M, et al. A heuristic machine learning-based algorithm for power and thermal management of
heterogeneous MPSoCs. In: Proc. of the 2015 IEEE/ACM Int’l Symp. on Low Power Electronics and Design (ISLPED). IEEE,
2015. 291−296.
[19] Lu S, Tessier R, Burleson W. Reinforcement learning for thermal-aware many-core task allocation. In: Proc. of the 25th Edition on
Great Lakes Symp. on VLSI. 2015. 379−384.
[20] Das A, Shafik RA, Merrett GV, et al. Reinforcement learning-based inter-and intra-application thermal optimization for lifetime
improvement of multicore systems. In: Proc. of the 51st Annual Design Automation Conf. 2014. 1−6.
[21] Benini L, Bogliolo A, De Micheli G. A survey of design techniques for system-level dynamic power management. IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 2000,8(3):299−316.
[22] Durand S, Lesecq S. Nonlinear and asymmetric thermal-aware DVFS control. In: Proc. of the 2013 European Control Conf. (ECC).
IEEE, 2013. 3240−3245.
[23] Mnih V, Badia AP, Mirza M, et al. Asynchronous methods for deep reinforcement learning. In: Proc. of the Int’l Conf. on Machine
Learning. 2016. 1928−1937.
[24] Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.
[25] Watkins CJCH , Dayan P. Q-learning. Machine Learning, 1992,8(3-4):279−292.
[26] Bienia C, Kumar S, Singh JP, et al. The PARSEC benchmark suite: Characterization and architectural implications. In: Proc. of the
17th Int’l Conf. on Parallel Architectures and Compilation Techniques. 2008. 72−81.
[27] Pallipadi V, Starikovskiy A. The ondemand governor: Past, present and future. In: Proc. of the Linux Symp., Vol.2. 2006. 223−238.
[28] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.
[29] Yeo I, Liu CC, Kim EJ. Predictive dynamic thermal management for multicore systems. In: Proc. of the 45th Annual Design
Automation Conf. 2008. 734−739.
[30] Sutton RS, Barto AG. Reinforcement Learning: An Introduction. MIT Press, 2018.
[31] Ishkov N. A complete guide to Linux process scheduling [MS. Thesis]. Tampere: University of Tampere, 2015.