Page 35 - 《软件学报》2021年第7期
P. 35

檀超  等:复杂软件系统的不确定性                                                               1953


                [23]    Uzun B, Tekinerdogan B. Model-driven architecture based  testing: A systematic  literature  review.  Formation and  Software
                     Technology, 2018,102:30–48.
                [24]    Achimugu P, Selamat A, Ibrahim  R,  et al. A systematic literature review of software  requirements prioritization research.
                     Information and Software Technology, 2014,56(6):568–585.
                [25]    Ding W, Liang P, Tang A, Van Vliet H. Knowledge-based approaches in software documentation: A systematic literature review.
                     Information and Software Technology, 2014,56(6):545–567.
                [26]    Kitchenham  B.  Evidence-based software  engineering  and systematic literature reviews. In: Proc. of the  Int’l Conf. on Product
                     Focused Software Process Improvement. Springer-Verlag, 2006. 3.
                [27]    Mahdavi-Hezavehi S, Galster  M,  Avgeriou P.  Variability in quality  attributes of service-based  software systems:  A systematic
                     literature review. Information and Software Technology, 2013:55(2):320–343.
                [28]    Dermeval D, Vilela J, Bittencourt II, Castro J, Isotani S, Brito P, Silva A. Applications of ontologies inrequirements engineering: A
                     systematic review of the literature. Requirements Engineering, 2016,21(4):405–437.
                [29]    Van Eck NJ, Waltman L. Text mining and visualization using VoSviewer. arXiv Preprint arXiv: 1109. 2058, 2011.
                [30]    Waltman L, Van Eck  NJ, Noyons ECM. A  unified approach  to mapping and  clustering of  bibliometric  networks.  Journal  of
                     Informetrics, 2010,4(4):629–635.
                [31]    ISO/IEC/IEEE 15288. Systems and software engineering—System life cycle processes. 2015.
                [32]    Kagermann H, Wahlster W, Helbig J. Securing the future of german manufacturing industry: Recommendations for implementing
                     the strategic initiative industrie 4.0. Final Report of the Industrie, 2013,4.
                [33]    De Lemos R, Giese H, Müller HA, Shaw M, Andersson J, Litoiu M, Schmerl B, Tamura G, Villegas NM, Vogel T, et al. Software
                     engineering for self-adaptive systems: A second research roadmap. In: Software Engineering for Self-adaptive Systems II. Springer-
                     Verlag, 2013. 1–32.
                [34]    Esfahani  N, Malek S. Uncertainty in self-adaptive software systems. In: Software  Engineering for Self-Adaptive Systems II.
                     Springer-Verlag, 2013. 214–238.
                [35]    Cheng B, Lemos R, Giese H,  Inverardi  P,  Magee  J, Andersson J,  Becker B, Bencomo N,  Brun  Y, Cukic B,  Serugendo GDM,
                     Dustdar  S,  Finkelstein  A, Gacek C, Geihs K, Grassi  V,  Karsai G,  Kienle H, Kramer  J, Whittle J. Software engineering  for
                     self-adaptive systems: A research roadmap. In: Software Engineering for Self-adaptive Systems. 2009,5525:1–26.
                [36]    Ahmad M, Gnaho C, Bruel JM, Laleau R. Towards a requirements engineering approach for capturing uncertaintyin cyber-physical
                     systems environment. In: Proc. of the Int’l Conf. on Model and Data Engineering, Springer-Verlag, 2018. 115–129.
                [37]    Ramparany F, Mondi R, Demazeau Y. A semantic approach for managing trust and uncertainty in distributed systems environments.
                     In: Proc of the 21st Int’l Conf. on Engineering of Complex Computer Systems (ICECCS). 2016. 63–70.
                [38]    Yang P, Hanneghan M, Qi J, Deng  Z,  Dong F, Fan D. Improving the validity of lifelogging physical  activity  measures INAN
                     Internet  of Things environment.  In: Proc.  of  the  2015 IEEE  Int’l  Conf. on  Computer and Information Technology; Ubiquitous
                     Computing andCommunications; Dependable, Autonomic and  Secure Computing;  Pervasive  Intelligence and Computing.  IEEE,
                     2015. 2309–2314.
                [39]    Bordel B, Alcarria R, De Andrés DM, You I. Securing Internet-of-Things systems through implicit and explicit reputation models.
                     IEEE Access, 2018,6:47472–47488.
                [40]    Banerjee S, Bouzefrane S, Mühlethaler P. Mobility prediction in vehicular networks: An approach through hybrid neural networks
                     under uncertainty. In: Proc. of the Int’l Conf. on Mobile, Secure, and Programmable Networking. Springer-Verlag, 2017. 178–194.
                [41]    Francalanza E, Borg J, Constantinescu C. A knowledge-based tool for designing cyber physical production systems. Computers in
                     Industry, 2017,84:39–58.
                [42]    Hashemi-Dezaki H, Askarian-Abyaneh H, Shams-Ansari A, DehghaniSanij M, Hejazi MA. Direct cyber-power interdependencies-
                     based reliability evaluation of smart grids including wind/solar/diesel distributed generations and plug-in hybrid electrical vehicles.
                     Int’l Journal of Electrical Power & Energy Systems, 2017,93:1–14.
                [43]    Cámara J, Garlan D, Schmerl B. Synthesis and quantitative verification of tradeoff spaces for families of software systems. In: Proc.
                     of the European Conf. on Software Architecture. Springer-Verlag, 2017. 3–21.
   30   31   32   33   34   35   36   37   38   39   40