Page 54 - 《软件学报》2021年第6期
P. 54

1628                                     Journal of Software  软件学报 Vol.32, No.6,  June 2021

         [12]    Benito FC, Kunzle LA. Unfolding for time Petri net. IEEE Latin America Transactions, 2017,15(5):1001−1008. https://doi.org/10.
             1109/TLA.2017.7912599
         [13]    Schwarick M, Rohr C, Liu  F, Assaf G, Chodak J, Heiner M. Efficient  unfolding  of coloured  Petri  nets  using  interval  decision
             diagrams. In: Proc. of the Int’l Conf. on Applications and Theory of Petri Nets and Concurrency. Cham: Springer-Verlag, 2020.
             324−344. https://doi.org/10.1007/978-3-030-51831-8_16
         [14]    Dong L, Liu G, Xiang D. Verifying CTL with unfoldings of Petri nets. In: Proc. of the Int’l Conf. on Algorithms and Architectures
             for Parallel Processing. Cham: Springer-Verlag, 2018. 47−61. https://doi.org/10.1007/978-3-030-05063-4_5
         [15]    Liu G, Reisig W, Jiang C, Zhou M. A branching-process-based method to check soundness of workflow systems. IEEE Access,
             2016,4:4104−4118. https://doi.org/10.1109/ACCESS.2016.2597061
         [16]    Chatain T, Paulevé L. Goal-Driven unfolding of Petri nets. arXiv preprint arXiv:1611.01296, 2016.
         [17]    Bonet  B,  Haslum  P, Hickmott S,  Thiébaux S. Directed unfolding of Petri nets. In: Proc. of the  Trans. on Petri  Nets  and  Other
             Models of Concurrency I. Berlin, Heidelberg: Springer-Verlag, 2008. 172−198. https://doi.org/10.1007/978-3-540-89287-8_11
         [18]    Bonet B, Haslum P, Khomenko V, Thiébaux S, Vogler W. Recent advances in unfolding technique. Theoretical Computer Science,
             2014,551:84−101. https://doi.org/10.1016/j.tcs.2014.07.003
         [19]    Abdulla PA, Iyer SP, Nylén A. SAT-Solving the coverability problem for Petri nets. Formal Methods in System Design, 2004,24(1):
             25−43. https://doi.org/10.1023/B:FORM.0000004786.30007.f8
         [20]    Leveson NG, Turner CS. An investigation of the Therac-25 accidents. Computer, 1993,26(7):18−41. https://doi.org/10.1109/MC.
             1993.274940
         [21]    Poulsen K. Software bug contributed to blackout. Security Focus. 2004. http://www.securityfocus.com/news/8016
         [22]    Joab J. Nasdaq’s Facebook glitch came from ‘race conditions’. 2012. http://www.computerworld.com/s/article/9227350
         [23]    Blackshear S,  Gorogiannis  N,  O’Hearn PW, Sergey  I.  RacerD:  Compositional  static race detection. Proc. of the  ACM on
             Programming Languages, 2018.2(OOPSLA):1−28. https://doi.org/10.1145/3276514
         [24]    Chatarasi P, Shirako J,  Kong M, Sarkar  V.  An  extended polyhedral  model for SPMD programs  and  its use in static data race
             detection. In: Proc. of the Int’l  Workshop on  Languages  and  Compilers  for Parallel  Computing.  Cham: Springer-Verlag, 2016.
             106−120. https://doi.org/10.1007/978-3-319-52709-3_10
         [25]    Bora U, Das S, Kukreja P, Joshi S, Upadrasta R, Rajopadhye S. Llov: A fast static data-race checker for OpenMP programs. ACM
             Trans. on Architecture and Code Optimization (TACO), 2020,17(4):1−26. https://doi.org/10.1145/3418597
         [26]    Wilcox JR, Flanagan C, Freund SN. VerifiedFT: A verified, high-performance precise dynamic race detector. In: Proc. of the 23rd
             ACM SIGPLAN  Symp. on Principles  and Practice of Parallel Programming. 2018. 354−367. https://doi.org/10.1145/3178487.
             3178514
         [27]    Gu  Y, Mellor-Crummey  J.  Dynamic data race detection for  OpenMP programs. In: Proc. of the SC18: Int’l  Conf. for  High
             Performance Computing, Networking, Storage and Analysis. IEEE, 2018. 767−778. https://doi.org/10.1109/SC.2018.00064
         [28]    Lidbury C, Donaldson AF. Dynamic race detection for C++ 11. ACM SIGPLAN Notices, 2017,52(1):443−457. https://doi.org/10.
             1145/3093333.3009857
         [29]    Kavi KM, Moshtaghi A, Chen DJ. Modeling multithreaded applications using Petri nets. Int’l Journal of Parallel Programming,
             2002,30(5):353−371. https://doi.org/10.1023/A:1019917329895
         [30]    Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V. Soot: A Java bytecode optimization framework. In: Proc. of the
             CASCON 1st Decade High Impact Papers. 2010. 214−224. https://doi.org/10.1145/1925805.1925818
         [31]    https://github.com/Zongyin-Hao/Coverability
         [32]    Liu GJ. Meta-unfolding of Petri  Nets:  A  Model  Checking Method of  Concurrent Systems.  Beijing: Science Press, 2020 (in
             Chinese).

         附中文参考文献:
         [32]  刘关俊.Petri 网的元展:一种并发系统模型检测方法.北京:科学出版社,2020.

         附录 A

             首先给出 adequate order 的定义.偏序关系≺是一个 adequate order,如果它满足:
             (1)  ≺是良基的;
             (2)  ≺是⊂的精炼,Cfg 1 ⊂Cfg 2 意味着 Cfg 1 ≺Cfg 2 ;
             (3)  若 Mark(Cfg 1 )≤Mark(Cfg 2 ),Cfg 1 ≺Cfg 2 ,则对 Cfg 2 的任意前缀 E 2 ,有 E 1 满足:
                                Mark(Cfg 1 ⊕E 1 )≤Mark(Cfg 2 ⊕E 2 ),且 Cfg 1 ⊕E 1 ≺Cfg 2 ⊕E 2 .
   49   50   51   52   53   54   55   56   57   58   59