Page 96 - 《软件学报》2021年第5期
P. 96

1320                                     Journal of Software  软件学报 Vol.32, No.5,  May 2021

                    当前方案基本满足了第 2.3 节中针对存储方案提出的多项设计目标,且具有稳定、高效的性能.未来的工作
                 主要从以下两个方面展开.
                    •   首先,需要实现第 5.2 节中针对不足所提出的解决方案.
                    •   其次,对当前的索引结构进行进一步的优化,例如将{index}值的持久化操作并入索引构建的过程中,可
                        以减少磁盘 IO 以提高写入性能.

                 References:
                 [1]    Ban QC. Research and implementation of Web log storage and analysis system based on hadoop [MS. Thesis]. Beijing: Beijing
                     University of Posts and Telecommunications, 2018 (in Chinese with English abstract).
                 [2]    Dianping/Cat. Meituan, 2020. https://github.com/dianping/cat/
                 [3]    Lou JG,  et  al.  Mining dependency in distributed systems  through unstructured logs  analysis.  ACM SIGOPS  Operating Systems
                     Review, 2010,44(1):91−96.
                 [4]    Chow M, Meisner D, Flinn J, et al. The mystery machine: End-to-end performance analysis of large-scale internet services. In: Proc.
                     of the 11th USENIX Symp. on Operating Systems Design and Implementation (OSDI 2014). 2014. 217−231.
                 [5]    Fonseca R, Freedman MJ, Porter G. Experiences with tracing causality in networked services. In: Proc. of the INM/WREN. 2010.
                 [6]    Kaldor J, et al. Canopy: An end-to-end performance tracing and analysis system. In: Proc. of the 26th Symp. on Operating Systems
                     Principles. 2017.
                 [7]    Mace J, Roelke R, Fonseca R. Pivot tracing: Dynamic causal monitoring for distributed systems. In: Proc. of the 25th Symp. on
                     Operating Systems Principles. 2015.
                 [8]    Fonseca R, et al. X-trace: A pervasive network tracing framework. In: Proc. of the 4th USENIX Symp. on Networked Systems
                     Design & Implementation (NSDI 2007). 2007.
                 [9]    Sigelman BH, et al. Dapper, a large-scale distributed systems tracing infrastructure. Technical Report, Google, 2010.
                [10]    DuBois P. MySQL. Addison-Wesley Professional, 2013.
                [11]    Mysql 5.6 reference manual: 11.3.4 the BLOB and text types. 2020. https://dev.mysql.com/doc/refman/5.6/en/ blob.html
                [12]    Chodorow K. MongoDB⎯The Definitive Guide: Powerful and Scalable Data Storage. O’Reilly Media, Inc., 2013.
                [13]    Song YH. Massive logs in the decision-making assistance system based on MongoDB storage and analysis. Science & Technology
                     Innovation and Application, 2019(33):5−8 (in Chinese with English abstract).
                [14]    Jose J,  et al.  Memcached design on  high performance  rdma  capable interconnects. In: Proc. of the 2011 Int’l  Conf. on Parallel
                     Processing. IEEE, 2011.
                [15]    Redis. 2020. https://redis.io/
                [16]    Tikv. 2020. https://tikv.org/
                [17]    He HG. Design of mass log storage system based on key-value [MS. Thesis]. Shanghai: Fudan University, 2013 (in Chinese).
                [18]    Gormley C, Tong Z. Elasticsearch: The Definitive Guide: A Distributed Real-time Search and Analytics Engine. O’Reilly Media,
                     Inc., 2015.
                [19]    Turnbull J. The Logstash Book. James Turnbull, 2013.
                [20]    Gupta Y. Kibana Essentials. Packt Publishing Ltd, 2015.
                [21]    Mitchell GR, Houdek ME. Hash index table hash generator apparatus. United States Patent 4215402, 1980-7-29.
                [22]    Jensen CS, Lin D, Ooi BC. Query and update efficient B+-tree based indexing of moving objects. In: Proc. of the 30th Int’l Conf.
                     on Very Large Data Bases, Vol.30. VLDB Endowment, 2004.
                [23]    Zstandard: Real-time data compression algorithm. Facebook, 2020. https://facebook.github.io/zstd/#GUI

                 附中文参考文献:
                  [1]  班秋成.基于 Hadoop 的 Web 日志存储和分析系统的研究与实现[硕士学位论文].北京:北京邮电大学,2018.
                 [13]  宋瑜辉.基于 MongoDB 存储和分析辅助决策系统中的海量日志.科技创新与应用,2019(33):5−8.
                 [17]  何海刚.基于 Key-Value 的海量日志存储系统设计[硕士学位论文].上海:复旦大学,2013.
   91   92   93   94   95   96   97   98   99   100   101