Page 353 - 《软件学报》2021年第5期
P. 353

陈鑫  等:高斯卷积角:用于叶片图像检索的形状描述不变量                                                    1577


                 CVIP100 和 MEW 上分别高出 3.19%和 2.99%以上).该实验结果验证了本文提出的方法在叶片图像检索中的有
                 效性和相较于其他同类方法的优越性.值得指出的是:本文的方法虽然是针对叶片图像提出的,但其也具有适应
                 于一般的形状识别任务的潜力.我们用公开的 Kimia 形状数据集测试了其应用于一般形状识别任务的潜力.进
                 一步地研究和发展该方法,以应用于其他的形状识别任务,将是今后进一步的研究的目标.


                 References:
                 [1]    Pimm SL, Joppa LN. How many plant species are there, where are they, and at what rate are they going extinct? Annals of the
                     Missouri Botanical Garden, 2015,100(3):170−176.
                 [2]    Horaisová K, Kukal J. Leaf classification from binary image via artificial intelligence. Biosystems Engineering, 2016,142:83−100.
                 [3]    Lee CL, Chen SY. Classification of leaf images. International Journal of Imaging Systems and Technology, 2006,16:15−23.
                 [4]    Chaki  J,  Parekh R, Bhattacharya S.  Plant leaf  recognition  using texture and shape  features with  neural classifiers.  Pattern
                     Recognition Letters, 2015,58:61−68.
                 [5]    Wang B, Gao Y.  Structure integral transform versus Radon transform: A 2D mathematical tool for invariant shape recognition.
                     IEEE Trans. on Image Processing, 2016,25(12):5635−5648.
                 [6]    Zhao C, Chan SSF, Cham WK, Chu LM. Plant identification using leaf shapes—A pattern counting approach. Pattern Recognition,
                     2015,48(10):3203−3215.
                 [7]    Wang B. Shape recognition using unordered point-set description and matching of object contour. Ruan Jian Xue Bao/Journal of
                     Software, 2016,27(12):3131−3142 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5101.htm [doi: 10.13328/j.
                     cnki.jos.005101]
                 [8]    Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and
                     Machine Intelligence, 2002,24(4):509−522.
                 [9]    Ling HB, Jacobs DW. Shape classification using the inner-distance. IEEE Trans. on Pattern Analysis and Machine Intelligence,
                     2007,29(2):286−299.
                [10]    Belhumeur PN,  Chen D, Feiner S,  Jacobs  DW, Kress WJ,  Ling H,  Lopez I,  Ramamoorthi  R, Sheorey S,  White S,  Zhang  L.
                     Searching the world's herbaria: A system for visual identification of plant species. In: Proc. of the European Conf. on Computer
                     Vision. 2008. 116−129.
                [11]    Backes AR, Casanova D, Bruno OM. A complex network-based approach for boundary shape analysis. Pattern Recognition, 2009,
                     42(1):54−67.
                [12]    Mokhtarian F, Mackworth AK. A theory of multi-scale, curvature-based shape representation for planar curves. IEEE Trans. on
                     Pattern Analysis and Machine Intelligence, 1992,14(8):789−805.
                [13]    Mokhtarian F,  Abbasi S.  Matching  shapes  with self-intersections:  Application to leaf  classification. IEEE  Trans. on Image
                     Processing, 2004,13(5):653−661.
                [14]    Manay S, Cremers D, Hong BW, Yezzi AJ, Soatto S. Integral invariants for shape matching. IEEE Trans. on Pattern Analysis and
                     Machine Intelligence, 2006,28(10):1602−1618.
                [15]    Kumar N, Belhumeur  PN, Biswas  A, Jacobs DW, Kress  WJ, Lopez  IC, Soares  JVB. Leafsnap: A computer vision  system  for
                     automatic plant species identification. In: Proc. of the European Conf. on Computer Vision. 2012. 502−516.
                [16]    Hu R, Jia W, Ling H, Huang D. Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. on Image Processing, 2012,
                     21(11):4667−4672.
                [17]    Wang B, Gao Y. Hierarchical string cuts: A translation, rotation, scale and mirror invariant descriptor for fast shape retrieval. IEEE
                     Trans. on Image Processing, 2014,23(9):4101−4111.
                [18]    Sivic J, Zisserman A. Video google: A text retrieval approach to object matching in videos. In: Proc. of the 9th IEEE Int’l Conf. on
                     Computer Vision. 2003. 1470−1477.
                [19]    Csurka G, Dance C, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proc. of the Workshop on
                     Statistical Learning in Computer Vision (ECCV 2004). 2004. 59−74.
                [20]    Wang X, Feng B, Bai X, Liu W, Latecki LJ. Bag of contour fragments for robust shape classification. Pattern Recognition, 2014,
                     47(6):2116−2125.
   348   349   350   351   352   353   354   355   356