Page 353 - 《软件学报》2021年第5期
P. 353
陈鑫 等:高斯卷积角:用于叶片图像检索的形状描述不变量 1577
CVIP100 和 MEW 上分别高出 3.19%和 2.99%以上).该实验结果验证了本文提出的方法在叶片图像检索中的有
效性和相较于其他同类方法的优越性.值得指出的是:本文的方法虽然是针对叶片图像提出的,但其也具有适应
于一般的形状识别任务的潜力.我们用公开的 Kimia 形状数据集测试了其应用于一般形状识别任务的潜力.进
一步地研究和发展该方法,以应用于其他的形状识别任务,将是今后进一步的研究的目标.
References:
[1] Pimm SL, Joppa LN. How many plant species are there, where are they, and at what rate are they going extinct? Annals of the
Missouri Botanical Garden, 2015,100(3):170−176.
[2] Horaisová K, Kukal J. Leaf classification from binary image via artificial intelligence. Biosystems Engineering, 2016,142:83−100.
[3] Lee CL, Chen SY. Classification of leaf images. International Journal of Imaging Systems and Technology, 2006,16:15−23.
[4] Chaki J, Parekh R, Bhattacharya S. Plant leaf recognition using texture and shape features with neural classifiers. Pattern
Recognition Letters, 2015,58:61−68.
[5] Wang B, Gao Y. Structure integral transform versus Radon transform: A 2D mathematical tool for invariant shape recognition.
IEEE Trans. on Image Processing, 2016,25(12):5635−5648.
[6] Zhao C, Chan SSF, Cham WK, Chu LM. Plant identification using leaf shapes—A pattern counting approach. Pattern Recognition,
2015,48(10):3203−3215.
[7] Wang B. Shape recognition using unordered point-set description and matching of object contour. Ruan Jian Xue Bao/Journal of
Software, 2016,27(12):3131−3142 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5101.htm [doi: 10.13328/j.
cnki.jos.005101]
[8] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2002,24(4):509−522.
[9] Ling HB, Jacobs DW. Shape classification using the inner-distance. IEEE Trans. on Pattern Analysis and Machine Intelligence,
2007,29(2):286−299.
[10] Belhumeur PN, Chen D, Feiner S, Jacobs DW, Kress WJ, Ling H, Lopez I, Ramamoorthi R, Sheorey S, White S, Zhang L.
Searching the world's herbaria: A system for visual identification of plant species. In: Proc. of the European Conf. on Computer
Vision. 2008. 116−129.
[11] Backes AR, Casanova D, Bruno OM. A complex network-based approach for boundary shape analysis. Pattern Recognition, 2009,
42(1):54−67.
[12] Mokhtarian F, Mackworth AK. A theory of multi-scale, curvature-based shape representation for planar curves. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 1992,14(8):789−805.
[13] Mokhtarian F, Abbasi S. Matching shapes with self-intersections: Application to leaf classification. IEEE Trans. on Image
Processing, 2004,13(5):653−661.
[14] Manay S, Cremers D, Hong BW, Yezzi AJ, Soatto S. Integral invariants for shape matching. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2006,28(10):1602−1618.
[15] Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JVB. Leafsnap: A computer vision system for
automatic plant species identification. In: Proc. of the European Conf. on Computer Vision. 2012. 502−516.
[16] Hu R, Jia W, Ling H, Huang D. Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. on Image Processing, 2012,
21(11):4667−4672.
[17] Wang B, Gao Y. Hierarchical string cuts: A translation, rotation, scale and mirror invariant descriptor for fast shape retrieval. IEEE
Trans. on Image Processing, 2014,23(9):4101−4111.
[18] Sivic J, Zisserman A. Video google: A text retrieval approach to object matching in videos. In: Proc. of the 9th IEEE Int’l Conf. on
Computer Vision. 2003. 1470−1477.
[19] Csurka G, Dance C, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proc. of the Workshop on
Statistical Learning in Computer Vision (ECCV 2004). 2004. 59−74.
[20] Wang X, Feng B, Bai X, Liu W, Latecki LJ. Bag of contour fragments for robust shape classification. Pattern Recognition, 2014,
47(6):2116−2125.