Page 31 - 《软件学报》2021年第5期
P. 31

殷康璘 等:基于混沌工程的微服务韧性风险识别和分析                                                       1255


                [63]    Wang P, et al. CloudRanger: Root cause identification for cloud native systems. In: Proc. of the 2018 18th IEEE/ACM Int’l Symp.
                     on Cluster, Cloud and Grid Computing (CCGRID). Piscataway: IEEE, 2018. 492−502. [doi: 10.1109/CCGRID.2018.00076]
                [64]    Lin JJ, Chen P, Zheng Z. Microscope: Pinpoint performance issues with causal graphs in micro-service environments. In: Proc. of
                     the Int’l Conf. on Service-oriented Computing. Cham: Springer-Verlag, 2018. 3−20. [doi: 10.1007/978-3-030-03596-9_1]
                [65]    Chen P,  Qi Y, Hou D.  CauseInfer: Automated  end-to-end performance diagnosis  with hierarchical  causality graph  in  cloud
                     environment. IEEE Trans. on Service Computing, 2019,12(2):214−230. [doi: 10.1109/TSC.2016.2607739]
                [66]    Standard Performance Evaluation Corporation. SPEC Benchmark. 2000. https://www.spec.org/benchmarks.html
                [67]    Transaction  processing  performance council. TPC Benchmark™C—Standard Specification Revision 5.11. 2010. http://www.tpc.
                     org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
                [68]    Transaction  Processing  Performance Council. TPC Benchmark™W—Standard Specification  Revision 2.0r. 2003. http://tpc.org/
                     tpc_documents_current_versions/pdf/tpcw_v2.0.0.pdf
                [69]    European Telecommunications  Standards  Institute. ETSI GS NFV-TST  001  Network  Functions Virtualisation (NFV);  Pre-
                     deployment Testing; Report  on Validation of NFV Environments and  Services.  2016.  https://www.etsi.org/deliver/etsi_gs/NFV-
                     TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
                [70]    Al-Masri E, Mahmoud QH. Qos-based discovery and ranking of Web services. In: Proc. of the 2007 16th Int’l Conf. on Computer
                     Communications and Networks. Piscataway: IEEE, 2007. 529−534. [doi: 10.1109/ICCCN.2007.4317873]
                [71]    Zhang Y, Zheng Z, Lyu MR. Wsexpress: A QoS-aware search engine for Web services. In: Proc. of the 2010 IEEE Int’l Conf. on
                     Web Services. Piscataway: IEEE, 2010. 91−98. [doi: 10.1109/ICWS.2010.20]
                [72]    Kalepu S, Krishnaswamy S, Loke SW. Verity: A QoS metric for selecting Web services and providers. In: Proc. of the 4th Int’l
                     Conf. on  Web Information  Systems  Engineering Workshops. Piscataway:  IEEE, 2003. 131−139. [doi: 10.1109/WISEW.2003.
                     1286795]
                [73]    Spirtes P, Clark G, Richard S. Causation, Prediction, and Search. 2nd ed., Cambridge: MIT Press, 1996. [doi: 10.1007/978-1-4612-
                     2748-9]
                [74]    Pearl J. Causality: Models, Reasoning, and Inference. 2nd ed., New York: Cambridge University Press, 2009.
                [75]    Anderson TW, Amemiya Y. The asymptotic normal  distribution of estimators in  factor analysis  under  general conditions. The
                     Annals of Statistics, 1988,16(2):759−771. [doi: 10.1214/aos/1176350834]
                [76]    Luo C, Lou JG, Lin Q, et al. Correlating events with time series for incident diagnosis. In: Proc. of the 20th ACM SIGKDD Int’l
                     Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2014. 1583−1592. [doi: 10.1145/2623330.2623374]
                [77]    Aderaldo CM, Mendonça NC, Pahl C, et al. Benchmark requirements for microservices architecture research. In: Proc. of the 1st
                     Int’l Workshop on  Establishing the  Community-wide Infrastructure for  Architecture-based Software  Engineering. Piscataway:
                     IEEE, 2017. 8−13. [doi: 10.1109/ECASE.2017.4]
                [78]    European  telecommunications standards institute.  ETSI GS  NFV-REL 001,  Network Functions Virtualisation  (NFV):  Resiliency
                     Requirements. 2015. https://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_NFV-REL001v010101p.pdf
                [79]    Thalheim J, Rodrigues A, Akkus IE, et al. Sieve: Actionable insights from monitored metrics in distributed systems. In: Proc. of the
                     18th ACM/IFIP/USENIX Middleware Conf. New York: ACM, 2017. 14−27. [doi: 10.1145/3135974.3135977]


                              殷康璘(1992-),男,博士,CCF 学生会员,                    杜庆峰(1968-),男,博士,教授,博士生导
                              主要研究领域为软件工程,智能运维.                            师,主要研究领域为软件工程与质量控制,
                                                                           机器学习与智能运维.
   26   27   28   29   30   31   32   33   34   35   36