Page 340 - 《软件学报》2020年第11期
P. 340

李阳  等:基于对象位置线索的弱监督图像语义分割方法                                                      3655


                [18]    Xie WX, Peng YX, Xiao JG. Weakly-supervised image parsing via constructing semantic graphs and hypergraphs. In: Proc. of the
                     Int’l Conf. on Multimedia. 2014. 277−286.
                [19]    Pathak D, Krahenbuhl P, Darrell T. Constrained convolutional neural networks for weakly supervised segmentation. In: Proc. of the
                     Int’l Conf. on Computer Vision. 2015. 1796−1804.
                [20]    Papadopoulos DP, Clarke  ADF,  Keller F, Ferrari V.  Training object  class detectors from eye tracking data. In: Proc. of  the
                     European Conf. on Computer Vision. 2014. 361−376.
                [21]    Oh SJ, Benenson R, Khoreva A, Akata Z, Frittz M, Schiele B. Exploiting saliency for object segmentation from image level labels.
                     In: Proc. of the IEEE Conf. on Computer Vision and PatternRecognition. 2017. 4410−4419.
                [22]    Wei YC, Feng JS, Liang XD, Cheng MM, Zhao Y, Yan SC. Object region mining with adversarial erasing: A simple classification
                     to semantic segmentation approach. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 6488−6496.
                [23]    Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proc. of the IEEE
                     Conf. on Computer Vision and Pattern Recognition. 2016. 2921−2929.
                [24]    Zhang J, Lin Z, Brandt J, Shen X, Sclaroff S. Top-down neural attention by excitation backprop. In: Proc. of the European Conf. on
                     Computer Vision. 2016. 543−559.
                [25]    Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency
                     maps. In: Proc. of the Int’l Conf. on Learning Representations. 2014.
                [26]    Selvaraju RR,  Cogswell  M, Das A,  Vedantam R,  Parikh  D, Batra D.  Grad-Cam: Visual explanations  from deep  networks  via
                     gradient-based localization. In: Proc. of the Int’l Conf. on Computer Vision. 2017. 618−626.
                [27]    Wang LJ, Lu HC, Wang YF, Feng MY, Wang D, Yin BC, Ruan X. Learning to detect salient objects with image-level supervision.
                     In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 136−145.
                [28]    Liu N, Han JW. Dhsnet: Deep hierarchical saliency network for salientobject detection. In: Proc. of the IEEE Conf. on Computer
                     Vision and Pattern Recognition. 2016. 678−686.
                [29]    Noh H,  Hong S,  Han  B.  Learning  deconvolution network for semantic segmentation. In: Proc. of the Int’l  Conf. on  Computer
                     Vision. 2015. 1520−1528.
                [30]    Shen T, Lin G, Shen C, Reid I. Learning multi-level region consistency with dense multi-label networks for semantic segmentation.
                     In: Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2017. [doi: 10.24963/ijcai.2017/377]
                [31]    Yu CQ, Wang JB, Peng C, Gao CX, Yu G, Sang N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
                     In: Proc. of the European Conf. on Computer Vision. 2018. 325−341.
                [32]    Zhao HS, Shi JP, Qi XJ, Wang XG, Jia JY. Pyramid scene parsing network. In: Proc. of the IEEE Conf. on Computer Vision and
                     Pattern Recognition. 2017. 6230−6239.
                [33]    Lin D, Dai JF, Jia JY, He KM, Sun J. Scribblesup: Scribblesupervised convolutional networks for semantic segmentation. In: Proc.
                     of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 3159−3167.
                [34]    Dai JF, He KM, Sun J. Boxsup: Exploiting bounding boxes to supervise convolutiona networks for semantic. In: Proc. of the IEEE
                     Conf. on Computer Vision and Pattern Recognition. 2015. 1635−1643.
                [35]    Papandreou G, Chen LG, Murphy K, Yuille AL. Weakly- and semisupervised learning of a  deep convolutional  network  for
                     semantic image segmentation. In: Proc. of the IEEE Conf. on Computer Vision. 2015. 1742−1750.
                [36]    Pathak D, Shelhamer E, Long J, Darrell T. Fully convolutional multi-class multipleInstance learning. In: Proc. of the Int’l Conf. on
                     Learning Representation. 2015.
                [37]    Cinbis RG, Verbeek J, Schmid C. Weakly supervised object localization with multi-fold multiple instance learning. IEEE Trans. on
                     Pattern Analysis and Machine Intelligence, 2015,39(1):189−203.
                [38]    Hong S, Oh J, Han B, Lee H. Learning transferrable knowledge for semantic segmentation with deep convolutional neural network.
                     In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 3204−3212.
                [39]    Wei YC, Liang XD, Chen YP,  Jie ZQ, Xiao YH, Zhao Y,  Yan SC. Learning to  segment with image-level annotations.  Pattern
                     Recognition, 2016,59:234−244.
                [40]    Saleh F, Akbarian MSA, Salzmann  M, Petersson L,  Gould S,  Alvarez  JM.  Built-in foreground/background  prior for  weakly-
                     supervised semantic segmentation. In: Proc. of the European Conf. on Computer Vision. 2016. 413−432.
                [41]    Wei YC, Liang XD, Chen YP,  Shen  XH, Cheng MM, Zhao Y,  Yan SC.  STC: A  simple  to complex  framework  for weakly-
                     supervised semantic segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017,39(11):2314−2320.
                [42]    Shen T, Lin G, Liu L, Shen C, Reid I. Weakly supervised semantic segmentation based on co-segmentation. arXiv:1705.09052,
                     2017.
   335   336   337   338   339   340   341   342   343   344   345