Page 130 - 《软件学报》2020年第11期
P. 130
3446 Journal of Software 软件学报 Vol.31, No.11, November 2020
[2] Holz T, Engelberth M, Freiling F. Learning more about the underground economy: A case-study of keyloggers and dropzones. In:
Backes M, Ning P, eds. Proc. of the Computer Security (ESORICS 2009). Springer-Verlag, 2009. 1−18.
[3] Liu J, Su PR, Yang M, He L, Zhang Y, Zhu XY, Lin HM. Software and cyber security—A survey. Ruan Jian Xue Bao/Journal of
Software, 2018,29(1):42−68 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5320.htm [doi: 10.13328/j.cnki.
jos.005320]
[4] Miao XC, Wang R, Xu L, Zhang WF, Xu BW. Security analysis for Android applications using sensitive path identification. Ruan
Jian Xue Bao/Journal of Software, 2017,28(9):2248−2263 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/
5177.htm [doi: 10.13328/j.cnki.jos.005177]
[5] Fredrikson M, Jha S, Christodorescu M, Sailer R, Yan X. Synthesizing near-optimal malware specifications from suspicious
behaviors. In: Proc. of the 2010 IEEE Symp. on Security and Privacy (SP 2010). Washington: IEEE Computer Society, 2010.
45−60.
[6] Eskandari M, Hashemi S. A graph mining approach for detecting unknown malwares. Journal of Visual Languages and Computing,
2012,23(3):154−162.
[7] Martinelli F, Saracino A, Sgandurra D. Classifying Android malware through subgraph mining. In: Garcia-Alfaro J, Lioudakis G,
Cuppens-Boulahia N, Foley S, Fitzgerald W, eds. Proc. of the Data Privacy Management and Autonomous Spontaneous Security.
Berlin, Heidelberg: Springer-Verlag, 2014. 268−283.
[8] Christodorescu M, Jha S, Kruegel C. Mining specifications of malicious behavior. In: Proc. of the 1st India Software Engineering
Conf. New York: ACM, 2008. 5−14.
[9] Park Y, Reeves DS, Stamp M. Deriving common malware behavior through graph clustering. In: Proc. of the 6th ACM Symp. on
Information, Computer and Communications Security. New York: ACM, 2011. 497−502.
[10] Fan M, Liu J, Wang W, Li HF, Tian ZZ, Liu T. DAPASA: Detecting Android piggybacked apps through sensitive subgraph
analysis. IEEE Trans. on Information Forensics and Security, 2017,12(8):1772−1785.
[11] Andriatsimandefitra R, Tong VVT. Detection and identification of Android malware based on information flow monitoring. In:
Proc. of the 2015 IEEE 2nd Int’l Conf. on Cyber Security and Cloud Computing. New York: IEEE, 2015. 200−203.
[12] Fan M, Liu J, Luo X, Chen K, Chen T, Tian Z, Zhang X, Zheng Q, Liu T. Frequent subgraph based familial classification of
android malware. In: Proc. of the 2016 IEEE 27th Int’l Symp. on Software Reliability Engineering (ISSRE). IEEE, 2016. 24−35.
[13] Karbalaie F, Sami A, Ahmadi M. Semantic malware detection by deploying graph mining. Int’l Journal of Computer Science Issues,
2012,9(1):373−379.
[14] Wuchner T, Cislak A, Ochoa M, Pretschner A. Leveraging compression-based graph mining for behavior-based malware detection.
IEEE Trans. on Dependable and Secure Computing, 2017,16(1):99−112.
[15] Banescu S, Wuchner T, Guggenmous M, Ochoa M, Prertschner A. An empirical evaluation framework for malware behavior
obfuscation. In: Proc. of the 10th Int’l Conf. on Malicious and Unwanted Software. Washington: IEEE Computer Society, 2015.
40−47.
[16] Wuchner T, Ochoa M, Pretschner A. Malware detection with quantitative data flow graphs. In: Proc. of the 9th ACM Symp. on
Information, Computer and Communications Security. New York: ACM, 2014. 271−282.
[17] Shervashidze N, Schweitzer P, Leeuwen EJV, Mehlhorn K. Weisfeiler-Lehman graph kernels. Journal of Machine Learning
Research, 2011,12:2539−2561.
[18] Narayanan A, Chandramohan M, Chen LH, Liu Y, Saminathan S. Subgraph2vec: Learning distributed representations of rooted
sub-graphs from large graphs. In: Proc. of the Computing Research Repository. 2016. 1−8.
[19] Mikolov T, Sutskever I, Chen K, Greg C, Dean J. Distributed representanitons of words and phrases and their compositionality. In:
Proc. of the Computer Science. 2013. 3111−3119.
[20] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In: Proc. of the Workshop at
ICLR. 2013. 1301−1312.
[21] Mikolov T, Le QV, Sutskever I. Exploiting similarities among languages for machine translation. In: Proc. of the Computer Science.
2013. 1−10.