Page 130 - 《软件学报》2020年第11期
P. 130

3446                                Journal of Software  软件学报 Vol.31, No.11, November 2020

                 [2]    Holz T, Engelberth M, Freiling F. Learning more about the underground economy: A case-study of keyloggers and dropzones. In:
                     Backes M, Ning P, eds. Proc. of the Computer Security (ESORICS 2009). Springer-Verlag, 2009. 1−18.
                 [3]    Liu J, Su PR, Yang M, He L, Zhang Y, Zhu XY, Lin HM. Software and cyber security—A survey. Ruan Jian Xue Bao/Journal of
                     Software, 2018,29(1):42−68 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5320.htm [doi: 10.13328/j.cnki.
                     jos.005320]
                 [4]    Miao XC, Wang R, Xu L, Zhang WF, Xu BW. Security analysis for Android applications using sensitive path identification. Ruan
                     Jian  Xue  Bao/Journal of Software, 2017,28(9):2248−2263  (in  Chinese with English abstract).  http://www.jos.org.cn/1000-9825/
                     5177.htm [doi: 10.13328/j.cnki.jos.005177]
                 [5]    Fredrikson  M, Jha S,  Christodorescu M, Sailer  R, Yan X. Synthesizing near-optimal  malware specifications from suspicious
                     behaviors. In: Proc. of the 2010 IEEE Symp. on Security  and Privacy  (SP 2010).  Washington: IEEE  Computer Society, 2010.
                     45−60.
                 [6]    Eskandari M, Hashemi S. A graph mining approach for detecting unknown malwares. Journal of Visual Languages and Computing,
                     2012,23(3):154−162.
                 [7]    Martinelli F, Saracino A, Sgandurra D. Classifying Android malware through subgraph mining. In: Garcia-Alfaro J, Lioudakis G,
                     Cuppens-Boulahia N, Foley S, Fitzgerald W, eds. Proc. of the Data Privacy Management and Autonomous Spontaneous Security.
                     Berlin, Heidelberg: Springer-Verlag, 2014. 268−283.
                 [8]    Christodorescu M, Jha S, Kruegel C. Mining specifications of malicious behavior. In: Proc. of the 1st India Software Engineering
                     Conf. New York: ACM, 2008. 5−14.
                 [9]    Park Y, Reeves DS, Stamp M. Deriving common malware behavior through graph clustering. In: Proc. of the 6th ACM Symp. on
                     Information, Computer and Communications Security. New York: ACM, 2011. 497−502.
                [10]    Fan M, Liu J, Wang  W, Li HF, Tian ZZ, Liu  T. DAPASA:  Detecting Android  piggybacked apps  through sensitive  subgraph
                     analysis. IEEE Trans. on Information Forensics and Security, 2017,12(8):1772−1785.
                [11]    Andriatsimandefitra  R, Tong VVT. Detection and identification  of Android malware  based on  information  flow monitoring.  In:
                     Proc. of the 2015 IEEE 2nd Int’l Conf. on Cyber Security and Cloud Computing. New York: IEEE, 2015. 200−203.
                [12]    Fan  M, Liu  J, Luo X, Chen K, Chen T, Tian Z, Zhang X, Zheng Q, Liu T.  Frequent subgraph  based  familial classification  of
                     android malware. In: Proc. of the 2016 IEEE 27th Int’l Symp. on Software Reliability Engineering (ISSRE). IEEE, 2016. 24−35.
                [13]    Karbalaie F, Sami A, Ahmadi M. Semantic malware detection by deploying graph mining. Int’l Journal of Computer Science Issues,
                     2012,9(1):373−379.
                [14]    Wuchner T, Cislak A, Ochoa M, Pretschner A. Leveraging compression-based graph mining for behavior-based malware detection.
                     IEEE Trans. on Dependable and Secure Computing, 2017,16(1):99−112.
                [15]    Banescu  S,  Wuchner T,  Guggenmous M, Ochoa M, Prertschner  A. An empirical evaluation  framework  for malware  behavior
                     obfuscation. In: Proc. of the 10th Int’l Conf. on Malicious and Unwanted Software. Washington: IEEE Computer Society, 2015.
                     40−47.
                [16]    Wuchner T, Ochoa M, Pretschner A. Malware detection with quantitative data flow graphs. In: Proc. of the 9th ACM Symp. on
                     Information, Computer and Communications Security. New York: ACM, 2014. 271−282.
                [17]    Shervashidze N, Schweitzer  P, Leeuwen EJV, Mehlhorn K.  Weisfeiler-Lehman  graph  kernels.  Journal  of Machine Learning
                     Research, 2011,12:2539−2561.
                [18]    Narayanan  A, Chandramohan  M,  Chen  LH,  Liu  Y, Saminathan S. Subgraph2vec:  Learning distributed representations of rooted
                     sub-graphs from large graphs. In: Proc. of the Computing Research Repository. 2016. 1−8.
                [19]    Mikolov T, Sutskever I, Chen K, Greg C, Dean J. Distributed representanitons of words and phrases and their compositionality. In:
                     Proc. of the Computer Science. 2013. 3111−3119.
                [20]    Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In: Proc. of the Workshop at
                     ICLR. 2013. 1301−1312.
                [21]    Mikolov T, Le QV, Sutskever I. Exploiting similarities among languages for machine translation. In: Proc. of the Computer Science.
                     2013. 1−10.
   125   126   127   128   129   130   131   132   133   134   135