Page 55 - 《高原气象》2025年第3期
P. 55

3 期                 金   天等:气候变化背景下黄河流域气候舒适度分布特征及时空变化                                       613
               舒适和较冷不舒适等级。6 个舒适度等级分布天数                              (1): 90-100. DOI: 10. 2478/s13533-011-0010-x.
               分别为 24 天(冷不舒适)、 126 天(较冷不舒适)、 59                  Katavoutas G, Founda D, 2019. Intensification of thermal risk in Med‐
                                                                    iterranean climates: evidence from the comparison of rational and
               天(凉)、 131 天(舒适)、 19 天(较热不舒适)和 6 天
                                                                    simple  indices[J]. International  Journal  of  Biometeorology,  63
              (热不舒适)。Ⅰ、 Ⅱ地区主要集中在凉和冷不舒适等
                                                                    (9): 1251-1264. DOI: 10. 1007/s00484-019-01742-w.
               级, 且并未受热带来的不舒适影响。而黄河流域、
                                                                 Matzarakis A, de Freitas C, 2001. Proceedings of the 1st International
               Ⅲ、 Ⅳ、 Ⅴ、 Ⅵ地区受较热不舒适影响, 全年处于较                          Workshop  on  Climate,  Tourism  and  Recreation[C]. Halkidiki:
               热不舒适的时间分别平均长达 19 天、 23 天、 24 天、                      International  Society  of  Biometeorology,  Commission  on  Cli‐
               46天、 60天。                                            mate Tourism and Recreation.
                                                                 Napoli C D, Pappenberger F, Cloke H L, 2018. Assessing heat-relat‐
               参考文献(References) :                                   ed health risk in Europe via the Universal Thermal Climate Index
                                                                    (UTCI)[J]. International  Journal  of  Biometeorology,  62(7):
               Blazejczyk K, Epstein Y, Jendritzky G, et al, 2012. Comparison of
                                                                    1155-1165. DOI: 10. 1007/s00484-018-1518-2.
                  UTCI to selected thermal indices[J]. International Journal of Bio‐  Napoli C D, Pappenberger F, Cloke H L, 2019. Verification of heat
                  meteorology,  56(3):  515-535. DOI:  10. 1007/s00484-011-  stress thresholds for a health-based heat-wave definition[J]. Jour‐
                  0453-2.                                           nal  of  Applied  Meteorology  and  Climatology,  58(6):  1177-
               Bröde P, Blazejczyk K, Fiala D, et al, 2013. The universal thermal   1194. DOI: 10. 1175/jamc-d-18-0246. 1.
                  climate index UTCI compared to ergonomics standards for assess‐  Perkins S, Alexander L V, Nairn J R, 2012. Increasing frequency, in‐
                  ing the thermal environment[J]. Industrial Health, 51(1): 16-  tensity and duration of observed global heatwaves and warm spells
                  24. DOI: 10. 2486/indhealth. 2012-0098.           [J]. Geophysical  Research  Letters,  39(20):  20714. DOI:  10.
               Bröde P, Fiala D, Błażejczyk K, et al, 2012. Deriving the operational   1029/2012gl053361.
                  procedure for the Universal Thermal Climate Index (UTCI)[J].  Salah  S A,  Matzarakis A,  2017. Seasonal  regional  differentiation  of
                  International Journal of Biometeorology, 56(3): 481-494. DOI:   human  thermal  comfort  conditions  in  Algeria[J]. Advances  in
                  10. 1007/s00484-011-0454-1.                       Meteorology, 2017: 1-14. DOI: 10. 1155/2017/9193871.
               Fanger P O, 1970. Thermal comfort analysis and application in envi‐  Shooshtarian S, Ridley I, 2016. Determination of acceptable thermal
                  ronment engineering[M]. Copenhagen: Danish Technical Press.  range  in  outdoor  built  environments  by  various  methods[J].
               Gagge A P, Fobelets A P, Berglund L G, 1986. A standard predictive   Smart & Sustainable Built Environment, 5(4): 352-371. DOI:
                  index of human response to the thermal environment[J]. Ashrae   10. 1108/sasbe-06-2016-0010.
                                                                 Sonia I, Markus G, Brigitte M, et al, 2014. No pause in the increase
                  Trans, 92(2): 709-731.
                                                                    of hot temperature extremes[J]. Nature Climate Change, 4(3):
               Gagge A P, Stolwijk J A J, Nishi Y, 1971. An effective temperature
                                                                    161-163. DOI: 10. 1038/nclimate2145.
                  scale based on a simple model of human physiological regulatory
                                                                 Thom E C, 1959. The discomfort index[J]. Weatherwise, 12(2): 57-
                  response[J]. Ashrae Transactions, 77(1): 21-36.
                                                                    61. DOI: 10. 1080/00431672. 1959. 9926960.
               Gerald A, Claudia T, 2004. More intense, more frequent, and longer
                                                                 Wu F F, Yang X H, Shen Z Y, 2019. Regional and seasonal varia‐
                  lasting heat waves in the 21st century[J]. Science, 305(5686):
                                                                    tions of outdoor thermal comfort in China from 1966 to 2016[J].
                  994-997. DOI: 10. 1126/science. 1098704.
                                                                    Science of the Total Environment, 665(15): 1003-1016. DOI:
               Givoni B, 1963. Estimation of the effect of climate on man: develop‐
                                                                    10. 1016/j. scitotenv. 2019. 02. 190.
                  ment of a new thermal index[M]. Jerusalem: Hebrew University.
                                                                 Yaglou  C  P,  Minard  D,  1957. Control  of  heat  casualties  at  military
               Jendritzky G, De D R, Havenith G, 2012. UTCI: why another ther‐
                                                                    training  centers[J]. Ama Arch  Ind  Health  archives  of  industrial
                  mal index?[J]. International Journal of Biometeorology, 56(3):
                                                                    health, 16(4): 302-16.
                  421-428. DOI: 10. 1007/s00484-011-0513-7.
                                                                 Zeng  D,  Wu  J  K,  Mu  Y  Q,  et  al,  2020. Spatial-temporal  pattern
               Jendritzky G, Havenith G, Weihs P, et al, 2009. Towards a universal
                                                                    changes of UTCI in the China-Pakistan economic corridor in re‐
                  thermal  climate  index  UTCI  for  assessing  the  thermal  environ‐
                                                                    cent  40  years[J]. Atmosphere,  11(8):  858. DOI:  10. 3390/at‐
                  ment  of  the  human  being[J]. Final  Report  COST Action,  730:   mos11080858.
                  1-26.                                          Zhao Q, Guo Y M, Ye T T, et al, 2021. Global, regional, and nation‐
               Kalkstein L S, Greene J S, 1997. An evaluation of climate/mortality   al burden of mortality associated with non-optimal ambient tem‐
                  relationships in large US cities and the possible impacts of a cli‐  peratures from 2000 to 2019: a three-stage modelling study[J].
                  mate change[J]. Environmental Health Perspetives, 105(1): 84-  The Lancet Planetary Health, 5(7): E415-E425. DOI: 10. 1016/
                  93. DOI: 10. 2307/3433067.                        s2542-5196(21)00081-4.
               Kantor N, Unger J, 2011. The most problematic variable in the course   金安琪, 张昂, 赵昕奕, 2019. 气候变化情景下中国东部地区未来
                  of human-biometeorological comfort assessment: the mean radi‐  气候舒适度变化预测[J]. 北京大学学报(自然科学版), 55
                  ant temperature[J]. Central European Journal of Geosciences, 3   (5):  887-898. DOI:  10. 13209/j. 0479-8023. 2019. 057. Jin A
   50   51   52   53   54   55   56   57   58   59   60