Page 134 - 《高原气象》2025年第3期
P. 134

高     原      气     象                                 44 卷
              692
                 ent  AMDAR  data  assimilation  time  window  to  Typhoon  Yagi.  perheavy  rainfall  event  on  20  July  2021  based  on  optical  flow
                 Journal  of  Marine  Meteorology[J],  41(4):  11-25. DOI:  10.  field of remote sensing data[J]. Chinese Journal of Atmospheric
                 19513/j. cnki. issn2096-3599. 2021. 04. 002.      Sciences, 45(6): 1384−1399. DOI: 10. 3878/j. issn. 1006-9895.
             史文茹, 李昕, 曾明剑, 等, 2021.“7·20”郑州特大暴雨的多模式对               2109. 21155.
                 比及高分辨率区域模式预报分析[J].大气科学学报, 44(5):               孙兴池, 陈金敏, 刁秀广, 等, 2009. 一次远距离台风暴雨过程分析
                 688-702.DOI: 10. 13878/j. cnki. dqkxxb. 20210823001. Shi W   [J]. 气 象 ,  35(5):  34-41. Doi:  10. 7519/j. issn. 1000-0526.
                 R,  LiX,  ZengM  J,  et  al,  2021. Multi-model  comparison  and   2009. 5. 005. Sun X C, Chen J M, Diao X G, et al, 2009. Analy‐
                 high-resolution  regional  model  forecast  analysis  for  the “7·20”  sis of one far distance typhoon and heavy rain process[J]. Meteo‐
                 Zhengzhou  severe  heavy  rain[J]. Transactions  of  Atmospheric   rological Monthly, 35(5): 34-41. DOI: 10. 7519/j. issn. 1000-
                 Sciences,  44(5):  688-702. DOI:  10. 13878/j. cnki. dqkxxb.    0526. 2009. 5. 005.
                 20210823001.                                   王瑞文, 龚建东, 韩威, 等, 2017. AMDAR 温度资料的偏差订正及
             苏爱芳, 吕晓娜, 崔丽曼, 等, 2021. 郑州“7. 20”极端暴雨天气的基             对 GRAPES 系统的影响[J]. 高原气象, 36(5): 1346-1356.
                 本观测分析[J]. 暴雨灾害, 40(5): 445-454. DOI: /10. 3969/j.  Doi:  10. 7522/j. issn. 1000-0534. 2016. 00124. Wang  R  W,
                 issn. 1004-9045. 2021. 05. 001. Su A F, Lv X N, Cui L M, et   Gong J D, Han W, et al, 2017. Bias correction of AMDAR tem‐
                 al,  2021. Prediction  and  test  of  optimal  integrated  precipitation   perature data and its impact on GRAPES system[J]. Plateau Me‐
                 based on similar spatial distribution of precipitation[J]. Torrential   teorology,  36(5):  1346-1356. DOI:  10. 7522/j. issn. 1000-
                 Rain  and  Disasters. 40(5):  445-454. DOI: /10. 3969/j. issn.  0534. 2016. 00124.
                 1004-9045. 2021. 05. 001.                      王晓芳, 崔春光, 2012.长江中下游地区梅雨期线状中尺度对流系
             孙莎莎, 陈博宇, 孙军, 等, 2023. 台风摩羯(1814)引发山东持续性              统分析Ⅰ: 组织类型特征[J].气象学报, 70(5): 909-923. Doi:
                 强降水的阶段性特征及其成因分析[J]. 高原气象, 42(4):                  10. 11676/qxxb2012. 077. Wang  X  F,  Cui  C  G,  2012. Analysis
                 962-977. DOI: 10. 7522/j. issn. 1000-0534. 2022. 00052. Sun S   of the linear mesoscale convective systems during the meiyu peri‐
                 S,  Chen  B Y,  Sun  J,  et  al,  2023. Periodic  characteristics  and   od in the middle and lower reaches of the Yangtze River. Part I:
                 cause  analysis  of  continuous  heavy  rainfall  induced  by  typhoon   Organization  mode  features[J]. Acta  Meteorologica  Sinica,  70
                 Yagi (1814) in Shandong[J]. Plateau Meteorology, 42(4): 962-  (5): 909-923. DOI: 10. 11676/qxxb2012. 077.
                 977. DOI: 10. 7522/j. issn. 1000-0534. 2022. 00052.  杨晓霞, 陈联寿, 刘诗军, 等, 2008. 山东省远距离热带气旋暴雨研
             孙跃, 肖辉, 杨慧玲, 等, 2021. 基于遥感数据光流场的 2021 年郑              究[J]. 气象学报, 66(2): 236-250. Doi: 10. 11676/qxxb2008.
                 州“7·20”特大暴雨动力条件和水凝物输送特征分析[J]. 大气                  023. Yang X X, Chen L S, Liu S J, et al, 2008.A study of the
                 科 学 , 45(6): 1384−1399. DOI: 10. 3878/j. issn. 1006-9895.  far distance tropical cyclone torrential rainfalls in Shandong Prov‐
                 2109. 21155. Sun Y, Xiao H, Yang H L, et al, 2021. Analysis of   ince[J]. Acta  Meteorologica  Sinica,  66(2):  236-250. DOI:
                 dynamic conditions and hydrometeor transport of Zhengzhou su‐  10. 11676/qxxb2008. 023.



                        Causes of the Outer Spiral Rainbands in Typhoon Yagi (2018)

                                           in Shandong Province of China


                         SHENG Chunyan , FAN Sudan , QU Qiaona , LIU Shijun , ZHU Wengang       1, 2
                                                                   1, 2
                                                                                1, 2
                                        1, 2
                                                      1, 2
                     (1. Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Jinan  250031, Shandong, China;
                                  2. Shandong Institute of Meteorological Sciences, Jinan  250031, Shandong, China)
             Abstract: On August 14, 2018, Typhoon Yagi (2018) moved northward and impacted Shandong Province of
             China, resulting in widespread rainstorm and heavy rainstorm. The total rainfall caused by the typhoon in Shan‐
             dong presents a round-shaped distribution. Specifically, on August 14, an outer spiral rainband appeared on the
             typhoon periphery in southeastern Shandong, bringing short-term heavy rainfall and local heavy rainstorms. Due
             to the relatively small scale of this rainband, both numerical forecasting models and forecasters face challenges
             in predicting its rainfall accurately. To study the mechanisms of the outer spiral rainbands of Typhoon Yagi, the
             characteristics and causes of the spiral rainbands are investigated in this study by using radar data and the observa‐
             tions  from  ground-based  stations,  radiosonde  stations  and  aircraft. Numerical  experiments  are  also  conducted
   129   130   131   132   133   134   135   136   137   138   139